Bee-friendly plants put to the test


Honeybee on lavender (c) Science Photo Library

Researchers have used an experimental garden to put pollinator-friendly plants to the test.

The University of Sussex scientists counted the number of insects visiting the plants in their garden.

They say their findings show that insect-friendly plants are just as pretty, cheap and easy to grow as less pollinator-friendly varieties.

Their results are published in the Journal of Functional Ecology.

PhD student Mihail Garbuzov used 32 different varieties of popular garden plants. These included some nectar-rich and highly scented plants he thought would be attractive to insects and some that seemed to be less attractive.

While the small-scale study did not produce an exhaustive list of the best plants for pollinating insects, the team says the data has put a number on just how many more pollinators the right plants can attract.

Mr Garbuzov told the BBC: “Some of the best plants attracted approximately 100 times as many insects as the worst.

“And the plants that are attractive to insects are not more expensive, and they’re just as pretty.”

The researchers wrote in their paper that there was “great scope for making gardens and parks more insect friendly” by selecting the right plants.

Tips for insect-friendly gardening are already available from a variety of sources, but the researchers say they are largely based on “opinion and general experience”.

The aim of this study, said Prof Francis Ratnieks, from the University of Sussex, was to “put that advice on a firmer scientific footing, by gathering information about the actual number of insects visiting the flowers to collect nectar or pollen”.

Counting bees

Honeybee on a flower (c) Ethel M Villalobos
  • Bees have different colour-detection systems from humans, and can see the world in ultraviolet. This helps them to detect the flowers they pollinate and take nectar from.
  • Pollination is essential for agriculture, as well as the reproduction of non-food flowers and plants. According to the UN Food and Agriculture Organization, pollinators including bees, birds and bats are involved in more than a third of the world’s crop production.
  • Honeybees evolved to make honey as a food source for the colony. Selective breeding of European honeybees by humans has produced colonies that make excess honey for us to harvest.

The researchers gathered their data simply by visiting each of the patches of flowers every day over two summers and counting the number of insects on the flowers.

Their results did lead them to make some horticultural recommendations – they found that borage, lavender, marjoram and open-flower dahlias varieties were very good for insects.

The colourfully named bowles mauve everlasting wallflower was also very attractive to pollinators, while the least attractive flowering plant for insects was the very popular geranium.

Marjoram, the researchers say, was probably the best “all-rounder”, attracting honey bees, bumble bees, other bees, hover flies, and butterflies.

Borage was the best for honey bees and lavender and open-flowered dahlias were most attractive to bumblebees.

The team put a number of varieties of lavender to the test and found that highly bred hybrids, including some with novel colours – such as white or pink – that have been carefully bred into the plants proved the most attractive to insects.

Dr Nigel Raine, from Royal Holloway University of London, commented that with bee populations declining across the world, “we can all give bees a helping hand by planting the right flowers to give them the nectar and pollen they need”.

“This study highlights that it’s important for bee-friendly gardeners to choose what you plant with care,” he added.

“Gardeners and town planners should think carefully about the mixture of flowers they plant to ensure food is available for a wide range of bees and other important insect pollinators.

“It’s also important to cater for the needs of the rarer species and provide food at times when there might be fewer wild flowers in bloom.”

In another prior study, a team from the University of California San Diego used this ‘taste test’ to work out if bees are able to detect the scent of a flower. If the bee detects a floral scent, it will stick out its tongue.

Study shows maths experts are ‘made, not born’


A new study of the brain of a maths supremo supports Darwin’s belief that intellectual excellence is largely due to “zeal and hard work” rather than inherent ability.

University of Sussex took fMRI scans of champion ‘mental calculatorYusnier Viera during arithmetical tasks that were either familiar or unfamiliar to him and found that his did not behave in an extraordinary or unusual way.

The paper, published this week (23 September 2013) in PloS One, provides scientific evidence that some calculation abilities are a matter of practice. Co-author Dr Natasha Sigala says: “This is a message of hope for all of us. Experts are made, not born.”

Cuban-born Yusnier holds world records for being able to name the days of the week for any dates of the past 400 years, giving his answer in less than a second. This is the kind of ability sometimes found in those with autism, although Yusnier is not on the autistic spectrum. Unlike those with autism or the related condition Asperger’s, he is able to explain exactly how he calculates his answers – and even teaches his system and has written books on the subject.

The study, carried out at the Clinical Imaging Sciences Centre on the University of Sussex campus, suggests that Yusnier has honed his ability to create short cuts to his answers by storing information in the middle part of the brain specialised for long-term (the and surrounding cortex). This type of memory helps us carry out tasks in our area of expertise with speed and efficiency.

Although the left side of his brain was activated during – which is normal for all brains – the scientists observed that something slightly different happened when Yusnier was presented with unfamiliar problems.

The scans showed marked connectivity of the anterior (prefrontal cortex), which are involved in decision making, during the unfamiliar calculations. This supports Yusnier’s report that he was building in an extra step to his mental processes to turn an unfamiliar problem into a familiar one. His answers to the unfamiliar questions had an 80 per cent degree of accuracy (compared with more than 90 per cent for familiar questions) and his responses were slightly slower.

https://i0.wp.com/phys.org/newman/gfx/news/2013/studyshowsma.jpg

Dr Sigala explains: “Although this kind of ability is seen among some people with autism, it is much rarer in those not on that spectrum. Brain scans of those with autism tend to show a variety of activity patterns, and autistic people are not able to explain how they reach their answer.

“With Yusnier, however, it is clear that his expertise is a result of long-term practice – and motivation.”

She adds: “It was beyond the scope of our paper to discuss the debate on deliberate practice vs. innate ability. But our study does not provide evidence for specific innate ability for mental calculations. As put by Charles Darwin to Francis Galton: ‘ […] I have always maintained that, excepting fools, men did not differ much in intellect, only in zeal and hard work; I still think this an eminently important difference.'”