DNA clamp to grab cancer before it develops.

As part of an international research project, a team of researchers has developed a DNA clamp that can detect mutations at the DNA level with greater efficiency than methods currently in use. Their work could facilitate rapid screening of those diseases that have a genetic basis, such as cancer, and provide new tools for more advanced nanotechnology. The results of this research is published this month in the journal ACS Nano.

Toward a new generation of screening tests

An increasing number of genetic mutations have been identified as risk factors for the development of cancer and many other diseases. Several research groups have attempted to develop rapid and inexpensive screening methods for detecting these mutations. “The results of our study have considerable implications in the area of diagnostics and therapeutics,” says Professor Francesco Ricci, “because the DNA clamp can be adapted to provide a fluorescent signal in the presence of DNA sequences having mutations with high risk for certain types cancer. The advantage of our fluorescence clamp, compared to other detection methods, is that it allows distinguishing between mutant and non-mutant DNA with much greater efficiency. This information is critical because it tells patients which cancer(s) they are at risk for or have.”

“Nature is a constant source of inspiration in the development of technologies,” says Professor Alexis Vallée-Bélisle. “For example, in addition to revolutionizing our understanding of how life works, the discovery of the DNA double helix by Watson, Crick and Franklin in 1953 also inspired the development of many diagnostic tests that use the strong affinity between two complementary DNA strands to detect mutations.”

“However, it is also known that DNA can adopt many other architectures, including triple helices, which are obtained in DNA sequences rich in purine (A, G) and pyrimidine (T, C) bases,” says the researcher Andrea Idili, first author of the study. “Inspired by these natural triple helices, we developed a DNA-based clamp to form a triple helix whose specificity is ten times greater than a double helix allows.”

“Beyond the obvious applications in the diagnosis of genetic diseases, I believe this work will pave the way for new applications related in the area of DNA-based nanostructures and nanomachines,” notes Professor Kevin Plaxco, University of California, Santa Barbara. “Such nanomachines could ultimately have a major impact on many aspects of healthcare in the future.”

“The next step is to test the clamp on human samples, and if it is successful, it will begin the process of commercialization,” concludes Professor Vallée-Bélisle.

Artist’s rendering of the discovery: the research team took advantage of the ability of certain DNA sequences to form a triple helix, in order to develop a DNA clamp. This nanometer-scale clamp recognizes and binds DNA sequences more strongly and more specifically, allowing the development of more effective diagnostic. Professor Alexis Vallée-Bélisle, Department of Chemistry, Université de Montréal worked with the researcher Andrea Idili and Professor Francesco Ricci of the University of Rome Tor Vergata, and Professor Kevin W. Plaxco, University of California Santa Barbara, to develop this diagnostic nanomachine


Exercise while pregnant may boost baby’s brain.

This week, Baby V and I have joined more than 30,000 neuroscientists in San Diego for the annual Society for Neuroscience meeting. We’ve wandered the miles of posters, dropped in on talks and generally soaked up the brain waves floating around this massive meeting of minds.

We’ve worked up a sweat more than once rushing around the meeting, so it’s nice to be reminded of all the exciting research on the benefits of physical exercise on the brain. Evidence is piling up that a fit body is one of the absolute best things you can do for a fit mind. And a study presented November 10 shows that if you’re pregnant, the benefits of exercise extend to your baby’s brain too.

Researchers from the University of Montreal asked pregnant women to exercise three times a week for 20 minutes until they were slightly short of breath. Other pregnant women didn’t exercise.  Eight to 12 days after the babies were born, the team recorded the electrical activity in sleeping babies’ brains.

Babies born to moms who exercised showed more localized brain activity patterns in response to sounds, the researchers found. This targeted brain activity is a sign of brain maturity, indicating that the brain is becoming more efficient. Babies whose mothers didn’t exercise during pregnancy showed more diffuse brain responses to sounds. The scientists plan on looking for lasting benefits by testing the babies at age 1.

Studies in rodents have found benefits of exercise during pregnancy: Rats born to moms who worked out have brains that are more resistant to low oxygen conditions, for instance. Maternal exercise boosts levels of cellular powerhouses called mitochondria in rat pups’ brains.  And exercise during pregnancy resulted in more newborn neurons in the mouse hippocampus, a brain region involved in learning and memory. Now, this new study suggests that some of these benefits might extend to people, too.

So, exercise is good for mom and good for baby. Now Baby V and I just need to find a study that reports exercise — specifically, walking miles and miles at a neuroscience conference — helps a baby to sleep through the night.

Completely Blind People Still Able To React To Light.

Photo credit: gun4hire

 1484  77  2 reddit0 googleplus1

Humans need light for a variety of reasons. Beyond allowing us to perceive our environment with sight, light also activates activity in the brain. A recent study has unexpectedly shown that even individuals who are completely blind are influenced by the presence of light. The presence or absence of light controls many bodily functions, including heart rate, attentiveness, mood, and reflexes. The study will be published in an upcoming edition of Journal of Cognitive Neuroscience. The work is a collaboration between a research team at the University of Montreal and the Brigham and Women’s Hospital in Boston.

The experiment was performed by exposing people who are completely blind to a blue light. The light was turned on and off and the participants were asked whether the light was on or off. The participants were shown to have a non-conscious response to the light, despite not being able to see it. There were more positive identifications made than could be explained by chance alone, though the awareness was non-conscious. This light perception comes from ganglion cells in the retina, which are different from the rod and cone cells that process light for sight.

Next, researchers tested if attentiveness was affected by the presence of light. For this activity, participants had to match sounds with lights on or off. Even though the participants could not visualize the light, they showed an increased attentiveness when light was shining into their eyes.

Finally, the test participants completed a brain scan with functional MRI (fMRI) to measure alertness, memory, and cognition recognition while performing tasks of matching sounds. Across the board, the tasks were completed more efficiently when light was present.

Because of these results, the researchers are speculating that light perception is part of the default mode network. This is the name for the brain activity that occurs non-consciously in the background, while other tasks take priority. They speculate that the ability to perceive light even without actively converting it into images is done to continually pay attention to and monitor the environment. If this is correct, it might help explain why cognitive performance is improved in the presence of light.

– See more at: http://www.iflscience.com/brain/completely-blind-people-still-able-react-light#sthash.KvGYh5Ew.dpuf