Neil DeGrasse Tyson Defends Elon Musk, Saying He’s “The Best Thing We’ve Had Since Thomas Edison”


main article image

Are you on team Elon?

 

 

Neil deGrasse Tyson defended Tesla CEO Elon Musk in an interview with TMZ, calling him “the best thing we’ve had since Thomas Edison.”

Tyson defended Musk’s conduct in an interview last week with Joe Rogan in which Musk was filmed smoking marijuana. (Recreational use of marijuana is legal in California, where the interview was filmed.)

“Can they leave him alone? Let the man get high if he wants to get high,” Tyson said.

Before his interview with Rogan, Musk told The New York Times in August that marijuana hurts one’s ability to work.

“Weed is not helpful for productivity. There’s a reason for the word ‘stoned.’ You just sit there like a stone on weed,” Musk said.

Tyson also addressed the process by which Musk explored the possibility of converting Tesla into a private company, saying Musk had to be accountable to the public since Tesla is traded on public markets.

“He’s got to obey the SEC, clearly. But if he doesn’t want to obey the SEC, then he’s got to have a private company, then he can do what he wants,” Tyson said.

Musk attracted controversy in August over his statements about wanting to take Tesla private, which raised questions about the certainty of funding Musk referenced in a tweet and where exactly that funding would come from.

Fox Business and The New York Times reported that the SEC had sent subpoenas to Tesla concerning Tesla’s plans to explore going private and Musk’s statements about the process. Musk ultimately said Tesla will remain a public company.

Tyson later said he’s a fan of Musk, suggesting that he’s among the most innovative people working today.

“Count me as team Elon,” Tyson said. “He’s the only game in town. He’s the best thing we’ve had since Thomas Edison.”

The Ten Inventions of Nikola Tesla Which Changed The World


‘Ere many generations pass, our machinery will be driven by a power obtainable at any point of the universe. Throughout space there is energy. — Nikola Tesla, 1892

Nikola Tesla is finally beginning to attract real attention and encourage serious debate nearly 70 years after his death.  Was he for real? A crackpot? Part of an early experiment in corporate-government control?

nic tesla 300x264 The Ten Inventions of Nikola Tesla Which Changed The World

We know that he was undoubtedly persecuted by the energy power brokers of his day — namely Thomas Edison, whom we are taught in school to revere as a genius.  He was also attacked by J.P. Morgan and other “captains of industry.” Upon Tesla’s death on January 7th, 1943, the U.S. government moved into his lab and apartment confiscating all of his scientific research, and to this day none of this research has been made public.

Besides his persecution by corporate-government interests (which is practically a certification of authenticity), there is at least one solid indication of Nikola Tesla’s integrity — he tore up a contract with Westinghouse that was worth billions in order to save the company from paying him his huge royalty payments.

But, let’s take a look at what Nikola Tesla — a man who died broke and alone — has actually given to the world. For better or worse, with credit or without, he changed the face of the planet in ways that perhaps no man ever has.

The Inventions of Nikola Tesla

1. Alternating Current

This is where it all began, and what ultimately caused such a stir at the 1893 World’s Expo in Chicago.  A war was leveled ever-after between the vision of Edison and the vision of Tesla for how electricity would be produced and distributed.  The division can be summarized as one of cost and safety: The DC current that Edison (backed by General Electric) had been working on was costly over long distances, and produced dangerous sparking from the required converter (called a commutator).  Regardless, Edison and his backers utilized the general “dangers” of electric current to instill fear in Tesla’s alternative: Alternating Current.

As proof, Edison sometimes electrocuted animals at demonstrations. Consequently, Edison gave the world the electric chair, while simultaneously maligning Tesla’s attempt to offer safety at a lower cost.  Tesla responded by demonstrating that AC was perfectly safe by famously shooting current through his own body to produce light.  This Edison-Tesla (GE-Westinghouse) feud in 1893 was the culmination of over a decade of shady business deals, stolen ideas, and patent suppression that Edison and his moneyed interests wielded over Tesla’s inventions. Yet, despite it all, it is Tesla’s system that provides power generation and distribution to North America in our modern era.

2. Light 

Of course he didn’t invent light itself, but he did invent how light can be harnessed and distributed. Tesla developed and used florescent bulbs in his lab some 40 years before industry “invented” them.At the World’s Fair, Tesla took glass tubes and bent them into famous scientists’ names, in effect creating the first neon signs. However, it is his Tesla Coil that might be the most impressive, and controversial. The Tesla Coil is certainly something that big industry would have liked to suppress: the concept that the Earth itself is a magnet that can generate electricity (electromagnetism) utilizing frequencies as a transmitter. All that is needed on the other end is the receiver — much like a radio.

3. X-rays 

Electromagnetic and ionizing radiation was heavily researched in the late 1800s, but Tesla researched the entire gamut. Everything from a precursor to Kirlian photography, which has the ability to document life force, to what we now use in medical diagnostics, this was a transformative invention of which Tesla played a central role. X-rays, like so many of Tesla’s contributions, stemmed from his belief that everything we need to understand the universe is virtually around us at all times, but we need to use our minds to develop real-world devices to augment our innate perception of existence.

4. Radio

Guglielmo Marconi was initially credited, and most believe him to be the inventor of radio to this day. However, the Supreme Court overturned Marconi’s patent in 1943, when it was proven that Tesla invented the radio years previous to Marconi. Radio signals are just another frequency that needs a transmitter and receiver, which Tesla also demonstrated in 1893 during a presentation before The National Electric Light Association. In 1897 Tesla applied for two patents US 645576, and US 649621. In 1904, however, The U.S. Patent Office reversed its decision, awarding Marconi a patent for the invention of radio, possibly influenced by Marconi’s financial backers in the States, who included Thomas Edison and Andrew Carnegie. This also allowed the U.S. government (among others) to avoid having to pay the royalties that were being claimed by Tesla.

5. Remote Control

This invention was a natural outcropping of radio. Patent No. 613809 was the first remote controlled model boat, demonstrated in 1898. Utilizing several large batteries; radio signals controlled switches, which then energized the boat’s propeller, rudder, and scaled-down running lights. While this exact technology was not widely used for some time, we now can see the power that was appropriated by the military in its pursuit of remote controlled war. Radio controlled tanks were introduced by the Germans in WWII, and developments in this realm have since slid quickly away from the direction of human freedom.

6. Electric Motor

Tesla’s invention of the electric motor has finally been popularized by a car brandishing his name. While the technical specifications are beyond the scope of this summary, suffice to say that Tesla’s invention of a motor with rotating magnetic fields could have freed mankind much sooner from the stranglehold of Big Oil. However, his invention in 1930 succumbed to the economic crisis and the world war that followed. Nevertheless, this invention has fundamentally changed the landscape of what we now take for granted: industrial fans, household applicances, water pumps, machine tools, power tools, disk drives, electric wristwatches and compressors.

7. Robotics

Tesla’s overly enhanced scientific mind led him to the idea that all living beings are merely driven by external impulses. He stated: “I have by every thought and act of mine, demonstrated, and does so daily, to my absolute satisfaction that I am an automaton endowed with power of movement, which merely responds to external stimuli.” Thus, the concept of the robot was born. However, an element of the human remained present, as Tesla asserted that these human replicas should have limitations — namely growth and propagation. Nevertheless, Tesla unabashedly embraced all of what intelligence could produce. His visions for a future filled with intelligent cars, robotic human companions, and the use of sensors, and autonomous systems are detailed in a must-read entry in the Serbian Journal of Electrical Engineering, 2006 (PDF).

8. Laser

Tesla’s invention of the laser may be one of the best examples of the good and evil bound up together within the mind of man. Lasers have transformed surgical applications in an undeniably beneficial way, and they have given rise to much of our current digital media. However, with this leap in innovation we have also crossed into the land of science fiction. From Reagan’s “Star Wars” laser defense system to today’s Orwellian “non-lethal” weapons’ arsenal, which includes laser rifles and directed energy “death rays,” there is great potential for development in both directions.

9 and 10. Wireless Communications and Limitless Free Energy

These two are inextricably linked, as they were the last straw for the power elite — what good is energy if it can’t be metered and controlled? Free? Never. J.P. Morgan backed Tesla with $150,000 to build a tower that would use the natural frequencies of our universe to transmit data, including a wide range of information communicated through images, voice messages, and text. This represented the world’s first wireless communications, but it also meant that aside from the cost of the tower itself, the universe was filled with free energy that could be utilized to form a world wide web connecting all people in all places, as well as allow people to harness the free energy around them. Essentially, the 0’s and 1’s of the universe are embedded in the fabric of existence for each of us to access as needed. Nikola Tesla was dedicated to empowering the individual to receive and transmit this data virtually free of charge. But we know the ending to that story . . . until now?

The release of Nikola Tesla’s technical and scientific research — specifically his research into harnessing electricity from the ionosphere at a facility called Wardenclyffe — is a necessary step toward true freedom of information. Please add your voice by sharing this information with as many people as possible.

As they state:

Tell your friends, bring it up and discuss it at your next general assembly, do whatever you can to get the word out, organize locally to make a stand for the release of Nikola Tesla’s research…. America is tired of corrupt corporate greed, supported by The American government, holding us back in a stagnant society in the name of profit . . . The Energy Crisis is a lie.

As an aside: there are some who have pointed out that Tesla’s experimentation with the ionosphere very well could have caused the massive explosion over Tunguska, Siberia in 1908, which leveled an estimated 60 million trees over 2,150 square kilometers, and may even have led to the much malignedHAARP technology. I submit that we would do well to remember that technology is never the true enemy; it is the misuse of technology that can enslave rather than free mankind from its animal-level survivalism.

Resources:

The 10 Inventions of Nikola Tesla That Changed The World.


I would also point you to Rand Clifford’s 3-part series: Nikola Tesla: Calling All Freethinkers! which has a wealth of different information than what you will read below. Also, Dave Hodges’ new article: Harnessing Quantum Entanglement Is Humanity’s Secret Weapon highlights the importance of the cover-up that has kept Tesla’s true genius from the world for far too long. Ere many generations pass, our machinery will be driven by a power obtainable at any point of the universe.

Throughout space there is energy. — Nikola Tesla, 1892 Nikola Tesla is finally beginning to attract real attention and encourage serious debate nearly 70 years after his death. Was he for real? A crackpot? Part of an early experiment in corporate-government control? We know that he was undoubtedly persecuted by the energy power brokers of his day — namely Thomas Edison, whom we are taught in school to revere as a genius. He was also attacked by J.P. Morgan and other “captains of industry.”

 

The 10 Inventions of Nikola Tesla That Changed The World

Upon Tesla’s death on January 7th, 1943, the U.S. government moved into his lab and apartment confiscating all of his scientific research, some of which has been released by the FBI through the Freedom of Information Act. (I’ve embedded the first 250 pages below and have added a link to the .pdf of the final pages, 290 in total). Besides his persecution by corporate-government interests (which is practically a certification of authenticity), there is at least one solid indication of Nikola Tesla’s integrity — he tore up a contract with Westinghouse that was worth billions in order to save the company from paying him his huge royalty payments. But, let’s take a look at what Nikola Tesla — a man who died broke and alone — has actually given to the world. For better or worse, with credit or without, he changed the face of the planet in ways that perhaps no man ever has. 1. Alternating Current — This is where it all began, and what ultimately caused such a stir at the 1893 World’s Expo in Chicago. A war was leveled ever-after between the vision of Edison and the vision of Tesla for how electricity would be produced and distributed.

The division can be summarized as one of cost and safety: The DC current that Edison (backed by General Electric) had been working on was costly over long distances, and produced dangerous sparking from the required converter (called a commutator). Regardless, Edison and his backers utilized the general “dangers” of electric current to instill fear in Tesla’s alternative: Alternating Current. As proof, Edison sometimes electrocuted animals at demonstrations. Consequently, Edison gave the world the electric chair, while simultaneously maligning Tesla’s attempt to offer safety at a lower cost. Tesla responded by demonstrating that AC was perfectly safe by famously shooting current through his own body to produce light. This Edison-Tesla (GE-Westinghouse) feud in 1893 was the culmination of over a decade of shady business deals, stolen ideas, and patent suppression that Edison and his moneyed interests wielded over Tesla’s inventions. Yet, despite it all, it is Tesla’s system that provides power generation and distribution to North America in our modern era. 2. Light — Of course he didn’t invent light itself, but he did invent how light can be harnessed and distributed. Tesla developed and used florescent bulbs in his lab some 40 years before industry “invented” them. At the World’s Fair, Tesla took glass tubes and bent them into famous scientists’ names, in effect creating the first neon signs. However, it is his Tesla Coil that might be the most impressive, and controversial. The Tesla Coil is certainly something that big industry would have liked to suppress: the concept that the Earth itself is a magnet that can generate electricity (electromagnetism) utilizing frequencies as a transmitter. All that is needed on the other end is the receiver — much like a radio. 3. X-rays — Electromagnetic and ionizing radiation was heavily researched in the late 1800s, but Tesla researched the entire gamut. Everything from a precursor to Kirlian photography, which has the ability to document life force, to what we now use in medical diagnostics, this was a transformative invention of which Tesla played a central role. X-rays, like so many of Tesla’s contributions, stemmed from his belief that everything we need to understand the universe is virtually around us at all times, but we need to use our minds to develop real-world devices to augment our innate perception of existence. 4. Radio — Guglielmo Marconi was initially credited, and most believe him to be the inventor of radio to this day. However, the Supreme Court overturned Marconi’s patent in 1943, when it was proven that Tesla invented the radio years previous to Marconi. Radio signals are just another frequency that needs a transmitter and receiver, which Tesla also demonstrated in 1893 during a presentation before The National Electric Light Association. In 1897 Tesla applied for two patents US 645576, and US 649621. In 1904, however, The U.S. Patent Office reversed its decision, awarding Marconi a patent for the invention of radio, possibly influenced by Marconi’s financial backers in the States, who included Thomas Edison and Andrew Carnegie. This also allowed the U.S. government (among others) to avoid having to pay the royalties that were being claimed by Tesla. 5. Remote Control — This invention was a natural outcropping of radio. Patent No. 613809 was the first remote controlled model boat, demonstrated in 1898. Utilizing several large batteries; radio signals controlled switches, which then energized the boat’s propeller, rudder, and scaled-down running lights. While this exact technology was not widely used for some time, we now can see the power that was appropriated by the military in its pursuit of remote controlled war. Radio controlled tanks were introduced by the Germans in WWII, and developments in this realm have since slid quickly away from the direction of human freedom. 6. Electric Motor — Tesla’s invention of the electric motor has finally been popularized by a car brandishing his name. While the technical specifications are beyond the scope of this summary, suffice to say that Tesla’s invention of a motor with rotating magnetic fields could have freed mankind much sooner from the stranglehold of Big Oil. However, his invention in 1930 succumbed to the economic crisis and the world war that followed. Nevertheless, this invention has fundamentally changed the landscape of what we now take for granted: industrial fans, household applicances, water pumps, machine tools, power tools, disk drives, electric wristwatches and compressors. 7. Robotics — Tesla’s overly enhanced scientific mind led him to the idea that all living beings are merely driven by external impulses. He stated: “I have by every thought and act of mine, demonstrated, and does so daily, to my absolute satisfaction that I am an automaton endowed with power of movement, which merely responds to external stimuli.” Thus, the concept of the robot was born. However, an element of the human remained present, as Tesla asserted that these human replicas should have limitations — namely growth and propagation. Nevertheless, Tesla unabashedly embraced all of what intelligence could produce. His visions for a future filled with intelligent cars, robotic human companions, and the use of sensors, and autonomous systems are detailed in a must-read entry in the Serbian Journal of Electrical Engineering, 2006 (PDF). 8. Laser — Tesla’s invention of the laser may be one of the best examples of the good and evil bound up together within the mind of man. Lasers have transformed surgical applications in an undeniably beneficial way, and they have given rise to much of our current digital media. However, with this leap in innovation we have also crossed into the land of science fiction. From Reagan’s “Star Wars” laser defense system to today’s Orwellian “non-lethal” weapons’ arsenal, which includes laser rifles and directed energy “death rays,” there is great potential for development in both directions. 9 and 10. Wireless Communications and Limitless Free Energy — These two are inextricably linked, as they were the last straw for the power elite — what good is energy if it can’t be metered and controlled? Free? Never. J.P. Morgan backed Tesla with $150,000 to build a tower that would use the natural frequencies of our universe to transmit data, including a wide range of information communicated through images, voice messages, and text. This represented the world’s first wireless communications, but it also meant that aside from the cost of the tower itself, the universe was filled with free energy that could be utilized to form a world wide web connecting all people in all places, as well as allow people to harness the free energy around them. Essentially, the 0’s and 1’s of the universe are embedded in the fabric of existence for each of us to access as needed. Nikola Tesla was dedicated to empowering the individual to receive and transmit this data virtually free of charge. But we know the ending to that story . . . until now? Tesla had perhaps thousands of other ideas and inventions that remain unreleased. A look at his hundreds of patents shows a glimpse of the scope he intended to offer. If you feel that the additional technical and scientific research of Nikola Tesla should be revealed for public scrutiny and discussion, instead of suppressed by big industry and even our supposed institutions of higher education, join the world’s call to tell power brokers everywhere that we are ready to Occupy Energy and learn about what our universe really has to offer. The release of Nikola Tesla’s technical and scientific research — specifically his research into harnessing electricity from the ionosphere at a facility called Wardenclyffe — is a necessary step toward true freedom of information. Please add your voice by sharing this information with as many people as possible.

Read More: http://www.whydontyoutrythis.com/2013/07/the-10-inventions-of-nikola-tesla-that-changed-the-world.html

How Supercomputers Will Yield a Golden Age of Materials Science?


In 1878 Thomas Edison set out to reinvent electric lighting. To develop small bulbs suitable for indoor use, he had to find a long-lasting, low-heat, low-power lighting element. Guided largely by intuition, he set about testing thousands of carbonaceous materials—boxwood, coconut shell, hairs cut from his laboratory assistant’s beard. After 14 months, he patented a bulb using a filament made of carbonized cotton thread. The press heralded it as the “Great Inventor’s Triumph in Electric Illumination.” Yet there were better filament materials. At the turn of the century, another American inventor perfected the tungsten filament, which we still use in incandescent lightbulbs today. Edison’s cotton thread became history.

quantum super computer

Materials science, the process of engineering matter into new and useful forms, has come a long way since the days of Edison. Quantum mechanics has given scientists a deep understanding of the behavior of matter and, consequently, a greater ability to guide investigation with theory rather than guesswork. Materials development remains a painstakingly long and costly process, however. Companies invest billions designing novel materials, but successes are few and far between. Researchers think of new ideas based on intuition and experience; synthesizing and testing those ideas involve a tremendous amount of trial and error. It can take months to evaluate a single new material, and most often the outcome is negative. As our Massachusetts Institute of Technology colleague Thomas Eagar has found, it takes an average of 15 to 20 years for even a successful material to move from lab testing to commercial application. When Sony announced the commercialization of the lithium-ion battery in 1991, for example, it seemed like a sudden, huge advance—but in fact, it took hundreds or thousands of battery researchers nearly two decades of stumbling, halting progress to get to that point.

Yet materials science is on the verge of a revolution. We can now use a century of progress in physics and computing to move beyond the Edisonian process. The exponential growth of computer-processing power, combined with work done in the 1960s and 1970s by Walter Kohn and the late John Pople, who developed simplified but accurate solutions to the equations of quantum mechanics, has made it possible to design new materials from scratch using supercomputers and first-principle physics. The technique is called high-throughput computational materials design, and the idea is simple: use supercomputers to virtually study hundreds or thousands of chemical compounds at a time, quickly and efficiently looking for the best building blocks for a new material, be it a battery electrode, a metal alloy or a new type of semiconductor.

Most materials are made of many chemical compounds—battery electrodes, which are composites of several compounds, are good examples—but some are much simpler. Graphene, which has been widely hyped as the future of electronics, consists of a one-atom-thick sheet of carbon. Regardless of a material’s complexity, one thing is always true: its properties—density, hardness, shininess, electronic conductivity—are determined by the quantum characteristics of the atoms of which it is made. The first step in high-throughput materials design, then, is to virtually “grow” new materials by crunching thousands of quantum-mechanical calculations. A supercomputer arranges virtual atoms into hundreds or thousands of virtual crystal structures. Next, we calculate the properties of those virtual compounds. What do the crystal structures look like? How stiff are they? How do they absorb light? What happens when you deform them? Are they insulators or metals? We command the computer to screen for compounds with specific desirable properties, and before long, promising compounds rise to the top. At the end of the process, data generated during that investigation go back into a database that researchers can mine in the future.

Since 2011 we have been leading a collaboration of researchers that aims to accelerate the computer-driven materials revolution. We call it the Materials Project. The goal is to build free, open-access databases containing the fundamental thermodynamic and electronic properties of all known inorganic compounds. To date, we have calculated the basic properties (the arrangement of the crystal structure, whether it is a conductor or an insulator, how it conducts light, and so on) of nearly all of the approximately 35,000 inorganic materials known to exist in nature. We have also calculated the properties of another few thousand that exist only in theory. So far some 5,000 scientists have registered for access to the database containing this information, and they have been using it to design new materials for solar cells, batteries, and other technologies.

We are not the only ones pursuing this approach. A consortium of researchers led by Stefano Cortarolo of Duke University has calculated tens of thousands of alloy systems; their research could yield lighter, stronger car frames, structural beams for skyscrapers, airplane skins, and so on. The Quantum Materials Informatics Project, which consists of researchers at Argonne National Laboratory, Stanford University and the Technical University of Denmark, has been using high-throughput computing to study catalytic processes on metal surfaces, which is particularly useful in energy research.

In the very near future, materials scientists will use high-throughput computing to design just about everything. We believe that this will lead to technologies that will reshape our world—breakthroughs that will transform computing, eliminate pollution, generate abundant clean energy and improve our lives in ways that are hard to imagine today.

The Materials Genome

The modern world is built on the success of materials science. The advent of transparent, conductive glass led to the touch screens on our smartphones. The reason those phones can beam information around the world at the speed of light is that materials scientists found a way to make glass free of impurity ions, enabling fiber-optic communications. And the reason those phones last a full day on a charge is because in the 1970s and 1980s, materials scientists developed novel lithium-storing oxide materials—the basis for the lithium-ion battery.

It was our work on batteries that brought us to high-throughput materials design in the first place. We had spent our careers doing computational materials design, but until a 2005 conversation with executives from Proctor & Gamble (P&G), we did not think about what serious time on the world’s most powerful supercomputers could make possible. These P&G executives wanted to find a better cathode material for the alkaline batteries made by their Duracell division. They asked us a surprising question: Would it would be possible to computationally screen all known compounds to look for something better? On reflection, we realized that the only real obstacles were computing time and money. They were happy to supply both. They committed $1 million to the project and gave our small team free rein over their supercomputing center.

We called our effort the Alkaline Project. We screened 130,000 real and hypothetical compounds and gave P&G a list of 200 that met the criteria the company asked for, all of which had the potential to be significantly better than its current chemistry. By then, we were convinced that high-throughput materials design was the future of our field. We added staff, raised resources and, in 2011, launched a collaboration between M.I.T. and Lawrence Berkeley National Laboratory, which we initially called the Materials Genome Project. Teams at the University of California, Berkeley, Duke University, the University of Wisconsin–Madison, the University of Kentucky, the Catholic University of Leuven in Belgium and other institutions have since joined in the effort, all of them contributing the data they generate to our free, open-access central data repository at Lawrence Berkeley.

Before long, we dropped “Genome” from the project name to distinguish it from an initiative that the White House Office of Science and Technology Policy was launching. And to be fair, the properties of chemical compounds are not really “genes”—they are not hereditary bits of information that provide a unique sequence of data. Still, a direct relation exists between the function or property of a material and its fundamental descriptors. Just as blue eyes can be correlated to a certain gene, the electronic conductivity of a material, for example, can be traced back to the properties and arrangements of the elements it is composed of.

These kinds of correlations are the basis of materials science. Here is a simple example: we know we can “tune” the color of minerals by introducing targeted defects into their crystal structure. Consider the ruby. Its red hue comes from an accidental 1 percent substitution of a chromium ion (Cr3+) for aluminum in the common mineral corundum (Al2O3). When the Cr3+ is forced into this environment, its electronic states become altered, which changes the way the material absorbs and emits light. Once we know the origin—the fundamental descriptor—of a property (in this case, the redness of a ruby), we can target it with synthetic methods. By tweaking those chemical defects, we can design new synthetic rubies with perfectly tuned colors.

The equations of quantum mechanics can tell us how to do that tweaking—what elements to use and how to arrange them. Yet the equations are so complex that they can really only be solved by computer. Say you want to screen a group of a few hundred compounds to see which ones have the properties you need. It takes an incredible amount of computing power to crunch those equations. Until recently, it simply was not possible, which is why so much of materials science has historically proceeded by trial and error. Now that we have the computing power, however, we can finally take advantage of the full predictive potential of quantum mechanics.

Suppose we are researching thermoelectric materials, which generate an electric current if they experience a large temperature gradient. (The reverse is also true: a thermoelectric material can sustain a temperature difference if you run a current through it; think instant cooling.) Society wastes an enormous amount of heat through combustion, industrial processing and refrigeration. If we had efficient, cheap and stable thermoelectric materials, we could capture this heat and reuse it as electricity. Thermoelectric devices could transform industrial waste heat into electricity to power factories. Heat from car exhaust pipes could power the electronics in the cockpit. Thermoelectrics could also provide on-demand solid-state cooling: little devices that we could weave into our clothing that, with a flip of a switch, would cool us down, no fans or compressors required.

One of the best thermoelectrics we know of today is lead telluride, which is far too toxic and expensive to use commercially. Suppose you are a researcher looking for a better thermoelectric material. Without high-throughput computing, this is how it would go: You would start by looking for known compounds that, like lead telluride, have a high Seebeck coefficient (a measure of the amount of electricity you get out for the temperature difference that goes in) but that, unlike lead telluride, are not made of rare, toxic or expensive elements. You would pore over tables and compare numbers. If you were lucky, you would come up with some candidate chemistries that, in theory, would seem like they could work. Then you would make those compounds in a lab. Physically synthesizing materials is an expensive, time-consuming and difficult job. Generally, you have no idea going in whether the new material will even be stable. If it is, you can measure its properties only after you have synthesized the compound and then repeated the process until you have a fairly pure sample. This can take months for each compound.

So far researchers have had no luck finding alternative thermoelectric materials. But they have not yet tried high-throughput computational materials design. That will soon change. Starting this year, we will begin working with researchers at the California Institute of Technology and five other institutions to perform high-throughput searches for new thermoelectric materials. We intend to keep at it until we find the chemical compounds that could make those energy-saving, miracle-cooling technologies a reality.

The Golden Age of Materials Design

Our ability to access, search, screen and compare materials data in an automated way is in its infancy. As this field grows, what could it yield? We will venture a few guesses.

Many promising clean-energy technologies are just waiting for advanced materials to become viable. Photocatalytic compounds such as titanium dioxide can be used to turn sunlight and water into oxygen and hydrogen, which can then be processed into liquid fuels. Other photocatalysts can do the same thing with carbon dioxide. The dream is an “artificial leaf” that can turn sunlight and air into methanol-like liquid fuels we could burn in cars and airplanes [see “Reinventing the Leaf,” by Antonio Regalado; Scientific American, October 2010]. Researchers at the Joint Center for Artificial Photosynthesis, a U.S. Department of Energy research center, are using high-throughput methods to look for materials that could make this technology feasible.

What about finding new metal alloys for use in those cars and airplanes? Reducing a vehicle’s weight by 10 percent can improve its fuel economy by 6 to 8 percent. U.S. industry already pours billions of dollars every year into research and development for metals and alloy manufacturing. Computer-guided materials design could multiply that investment. Significant advances in high-strength, lightweight and recyclable alloys would have a tremendous impact on the world economy through increased energy efficiency in transportation and construction.

Computing is another field in need of transformative materials. Recently we have seen many serious predictions that we are nearing the end of Moore’s law, which says that computing power doubles roughly every two years. We have long known that silicon is not the best semiconductor. It just happens to be abundant and well understood. What could work better? The key is to find materials that can quickly switch from conducting to insulating states. A team at U.C.L.A. has made extremely fast transistors from graphene. Meanwhile a group at Stanford has reported that it can flip the electrical on/off switch in magnetite in one trillionth of a second—thousands of times faster than transistors now in use. High-throughput materials design will enable us to sort through these possibilities.

This list is much longer. Researchers are using computational materials design to develop new superconductors, catalysts and scintillator materials. Those three things would transform information technology, carbon capture and sequestration, and the detection of nuclear materials.

Computer-driven materials design could also produce breakthroughs that are hard to imagine. Perhaps we could invent a new liquid fuel based on silicon instead of carbon, which would deliver more energy than gasoline while producing environmentally benign reaction products such as sand and water. People have talked about the idea for decades, but no one has figured out a workable formula. High-throughput materials design could at least tell us if such a thing is possible or if we should focus our efforts elsewhere.

All of this is why we believe we are entering a golden age of materials design. Massive computing power has given human beings greater power to turn raw matter into useful technologies than they have ever had. It is a good thing, too. To help us deal with the challenges of a warming, increasingly crowded planet, this golden age cannot start soon enough.