Astronomers Tiptoe Closer to Confirming First Exomoon


Signals seen by the Hubble Space Telescope suggest a Neptune-size moon may orbit a gas-giant planet around a star some 8,000 light-years from Earth.
Astronomers Tiptoe Closer to Confirming First Exomoon
Artist’s impression of the exoplanet Kepler 1625 b transiting its star, trailed by a candidate exomoon. 

Have astronomers just found the first-ever exomoon, a lunar companion of a planet orbiting another star? Definitely maybe.

Using data from NASA’s Kepler and Hubble space telescopes, Columbia University astronomers Alex Teachey and David Kipping report the potential signal of a Neptune-size moon around a planet three times heavier than Jupiter, all orbiting a nearly 10-billion-year-old sun-like star called Kepler 1625 b about 8,000 light-years from Earth. Such a large moon defies easy explanation based on prevailing theories. The findings appear in a study published October 3 in Science Advances, and follow from the duo’s earlier work reported last year that first offered more tentative evidence of the moon.

If confirmed, this discovery would challenge scientists’ current understanding of planet and moon formation while bearing potentially profound implications for the prevalence of life throughout the cosmos, revealing once again that when it comes to alien worlds, the universe is often stranger than anyone can suppose.

An Extraordinary Exomoon

If our solar system is any guide at all, moons should vastly outnumber planets in the universe, and could make up most of the habitable real estate in any given galaxy. Pinning down how—and how often—they form would thus give astrobiologists a leg up on finding life elsewhere in our galaxy. Already, Kipping and Teachey’s statistics derived from Kepler data suggest moons are conspicuously absent around planets in temperate orbits around their stars—hinting that most large lunar companions must lurk further out in colder climes, and that habitable moons akin to Star Wars’ Endor or Avatar’s Pandora may be exceedingly rare.

Moons, it is thought, can form in three ways: coalescing from rings of gas and dust leftover from a planet’s formation; from debris knocked into orbit around a planet from a giant impact; or by being gravitationally captured by a planet via rare close encounters with pairs of co-orbiting asteroids or comets. But this newly proposed exomoon fails to fit neatly in any of those origin stories. It appears to be too big to easily coalesce alongside its planet, which itself is too massive and gassy to readily eject debris from any conceivable impact. Capture via close encounter, although possible, would require an implausibly perfect concatenation of unlikely circumstances. “If valid, this would probably open up a new formation scenario for moons,” says René Heller, a theorist at the Max Planck Institute for Solar System Research in Germany who was not part of the study. “Actually, the very existence of the proposed moon would call for a need to rethink our concepts of what a ‘moon’ actually is in the first place.”

For perspective, consider that our solar system’s largest moon, Jupiter’s Ganymede, is less than half as massive as our sun’s smallest planet, Mercury. Kepler 1625 b’s moon, by contrast, would be about 10 times as massive as all the terrestrial planets and the hundreds of moons in our solar system combined. This suggests, Heller says, “that this moon would have formed in a completely different way than any moon in our solar system.”

Even the study’s authors agree their potentially historic claim should give pause—no one has ever conclusively discovered an exomoon before, let alone one so utterly bizarre. “This moon would have fairly surprising properties, which is a good reason for skepticism,” says Kipping, an assistant professor at Columbia who has spent the last decade pioneering the hunt for exomoons. “If this was the 10th known object of its type, we would be calling it a ‘discovery,’ no question. But because it’s the first of its kind, it demands a higher level of scrutiny…. I can’t yet convince myself 100 percent this is definitely real.”

“We are urging caution here—the first exomoon is obviously an extraordinary claim, and it requires extraordinary evidence,” says Teachey, the study’s lead author and a PhD candidate under Kipping’s wing at Columbia. “We are not cracking open champagne bottles just yet on this one.”

Scarcely anything else is known about this potential satellite, save that its estimated size and three-million-kilometer separation from its planetary host would make it appear in that world’s skies twice as large as Earth’s own moon. Based on the planet–moon pair’s 287-day orbit around its star, Teachey and Kipping have crudely calculated average temperatures there might approach that of boiling water—uncomfortably warm, to be sure, but easy enough for Earth’s hardiest microbes to thrive in. Biology’s bigger challenge would be the lack of surfaces on both the planet and its moon—expect no aliens there.

Caught in Transit

Claims of exomoons have come and gone over the years, but a couple stand out as particularly plausible. In 2013 scientists reported the potential detection of what could have been either a Mars to Neptune–mass exomoon circling a Jupiter-mass exoplanet floating freely through space—or a Jupiter-like gas giant orbiting a small, faint star. Whatever its nature, the system was only detected in the first place due to a phenomenon called gravitational microlensing that occurs just once and entirely by chance in any given instance, and thus could not be observed again. Then, in 2015, a separate analysis of a gargantuan ring system found around the “super-Saturn” exoplanet J1407 b revealed multiple gaps potentially cleared by what might be several Mars to Earth–mass exomoons otherwise hidden in the rings. Yet beyond these circumstantial findings no credible candidates existed.

The first hints of a breakthrough discovery emerged last year, as part of a five-year hunt Kipping and Teachey conducted for exomoons around nearly 300 planets from Kepler’s massive data set, which contains thousands of known worlds. Almost all of Kepler’s planets transit, meaning they cross the faces of their suns as seen from Earth, casting a shadow toward us that astronomers measure as a star’s brief dimming. If some of those planets harbor conspicuously large moons in wide orbits, the moons might detectably transit, too, imprinting their own much smaller diminution in a star’s light either shortly before or after a planet’s passage. Kipping and Teachey spied what looked to be just such a signal in three transits of Kepler 1625 b. This was enough to net them 40 hours of time using Hubble’s Wide Field Camera 3 (WFC3) instrument for a follow-up observation of a single additional transit of the planet and its potential moon, predicted to take place on October 28 and 29, 2017. In addition to looking for a moon’s transit, their Hubble program would also attempt to pin down the precise timing of Kepler 1625 b’s transit, which could be altered by the gravitational tugging of a moon or a nearby nontransiting planet.

Reaching four times greater precision than Kepler’s data, Hubble’s observations revealed that, indeed, this transit of Kepler 1625 b was shifted in time, arriving about 75 minutes ahead of schedule—just as would be expected if the planet’s motions were being perturbed by a massive accompanying moon. Additionally, 3.5 hours after the planet’s transit concluded, Hubble picked up a second, far smaller dip as the star’s brightness appeared to fade by just five hundredths of 1 percent. Stars dim more than that all the time due to starspots and convective patterns on their surfaces, but basic observational tests suggest such stellar activity was not the culprit here, Kipping says. Instead, he says, the minuscule signal was consistent with a Neptune-size moon “trailing the planet like a dog following its owner on a leash.”

Alas, Kipping and Teachey’s allotted Hubble time expired before they could capture the conclusion of the smaller transit’s conclusion, rendering their data set incomplete and leaving wide open the possibility that the apparent shadow of the moon had been something else entirely.

A Time to Kill

“I don’t see any reason why it wouldn’t be an exomoon,” says Peter McCullough, an astronomer and expert on Hubble’s instrumentation at Johns Hopkins University who was not involved in the research. “Alternatively, I don’t see any reason why it would be. Either statement is justifiable.”

Against the exomoon hypothesis, McCullough and other researchers familiar with the results note Hubble’s WFC3 instrument is notorious for routinely exhibiting minor, hard-to-pin-down variations in its performance that could mimic the subtle signal of a moon. Furthermore, they point to the latest data release from the Kepler mission, in which new, state-of-the-art analytical methods caused the already borderline signs of the exomoon to fade to insignificance in the Kepler data. “I think this shows how fluid the interpretation can be, with so few observed transits [of Kepler 1625 b],” McCullough says. “The researchers are fully aware of that—they are the world’s experts in this field. It’s just the nature of the problem—it’s hard.”

Teachey and Kipping maintain that after spending almost a year being their own harshest critics and trying as best they can to explain away the evidence, their most extraordinary claim remains the most compelling. “As far as we can tell, there is no way to kill this signal—there really is a second dip in the star’s light,” Kipping says. And yes, the time shift in Kepler 1625 b’s transit could alternatively be due to the influence of a very massive unseen planet—but no such planet has been found despite Kepler’s and Hubble’s combined scrutiny. “A moon is the simplest, most elegant and self-consistent hypothesis—that’s why we favor it.” Kipping says. “The time has come to let the community interrogate our findings.”

There is only one way to truly settle the issue: more data. NASA’s upcoming James Webb Space Telescope should be more than capable of definitively ruling for or against this hoped-for first exomoon, but it is not slated to launch until 2021 at the earliest. In the meantime Kipping and Teachey are awaiting approval of another Hubble observing proposal, which would use twice as much telescope time to catch complete transits of Kepler 1625 b and of its putative moon during the celestial pair’s next predicted crossing in May 2019.

This time, they predict the moon will be on the opposite side of its orbit, with a transit preceding that of the planet itself. “We should see a separate, clean moonlike event,” Kipping says. “If we see that, then I think we’re done…. I think we’d have a very closed case on this system.” Except, of course, on how it formed in the first place.

An Atmosphere Has Been Detected Around an Earth-Like Exoplanet for the First Time


Astronomers have detected an atmosphere around an Earth-like exoplanet called Gliese 1132b (GJ 1132b for short), which is located around 39 light-years away in the constellation Vela.

This is the first time atmosphere has ever been detected around a planet with a mass and radius so similar to Earth’s, and that makes it a hugely promising (and exciting) target for researchers searching for signs of extraterrestrial life.

 

“While this is not the detection of life on another planet, it’s an important step in the right direction: the detection of an atmosphere around the super-Earth GJ 1132b marks the first time that an atmosphere has been detected around an Earth-like planet other than Earth itself,” said lead researcher John Southworthfrom Keele University in the UK.

There’s still a lot to learn about GJ 1132b’s atmosphere, but early observations suggest it could be a “‘water world’ with an atmosphere of hot steam” – AKA, a pretty awesome place to go looking for life.

So far, we know that GJ 1132b has a mass about 1.6 times that of Earth’s, and has roughly 1.4 times its radius – which in terms of exoplanets makes it remarkably similar to our home planet.

But as with all exoplanet discoveries, the researchers are quick to remind the public that the observations to date still really don’t give us much insight into how similar GJ 1132b could be to Earth – or how habitable.

Some bad news upfront is it has an estimated surface temperature of 370 degrees Celsius (698 degrees Fahrenheit), which makes it unlikely that it could host life like us.

And let’s not forget that we’ve recently been burned by the detection of the TRAPPIST-1 ‘sister solar system’ and neighbouring Earth-like planet Proxima b, both of which are unlikely to be the friendly places for life we first thought they were.

 But none of those planets had ever gotten as far as having an atmosphere detected, so GJ 1132b is already doing pretty well in terms of a spot that could potentially host life.

Right now, the top strategy for astronomers in the search for life on another planet is to detect the chemical composition of that planet’s atmosphere, looking for certain chemical imbalances that could hint at the presence of living organisms. For example, on Earth, the large amount of oxygen in our atmosphere is that ‘smoking gun’.

We’re a long way off having that much insight into GJ 1132b, but the fact that we’ve detected its atmosphere at all is a good first step.

The planet orbits the not-too-distant red dwarf star Gliese 1132, which Southworth and his team studied using the ESO/MPG telescope in Chile.

They measured the slight dip in brightness across seven wavelengths of light as GJ1132b passed in front of its host star every 1.6 Earth days, in order to get a better idea of the size and composition of the planet.

They were surprised to find that the planet appeared larger when observed in one type of infrared wavelength of light, which suggests that the planet has an atmosphere that’s opaque to these wavelengths.

The team went on to model different possible versions of this atmosphere, and found that an atmosphere rich in water and methane could explain what they were seeing.

Prior to this, the only exoplanets that researchers have detected atmospheres around were planets that were more than eight times more massive than Earth, and gas giants similar to Jupiter.

“With this research, we have taken the first tentative step into studying the atmospheres of smaller, Earth-like, planets,” said Southworth. “The planet is significantly hotter and a bit larger than Earth, so one possibility is that it is a ‘water world’ with an atmosphere of hot steam.”

The type of star GJ 1132b is orbiting also makes the planet of particular interest – its host star is a low-mass red dwarf, which are incredibly common throughout the Universe and are frequently found to host small, Earth-like planets.

But they’ve also been shown to be particularly active, often blasting huge solar flares out at their surrounding planets – something previous research has suggested would evaporate any traces of a planet’s atmosphere.

But the new discovery suggests that an atmosphere is possible of enduring this bombardment for billions of years without being destroyed – which opens up the possibility that thousands more planets orbiting low-mass stars could potentially harbour atmospheres.

“Given the huge number of very low-mass stars and planets, this could mean that the conditions suitable for life are common in the Universe,” a press release explains.

We still have a lot to learn about GJ 1132b, and hopefully we’ll have some more answers soon – the new discovery makes it one of the highest-priority targets to be studied by instruments such as the Hubble Space Telescope, the Very Large Telescope, and the James Webb Space Telescope, which is scheduled to launch in 2018.

Source:sciencealert.com

NASA: A Cataclysmic Event Has Taken Place In Space.


Strange occurrence originated from a galaxy 10.7 billion light years away

nasa has reported that a cataclysmic event has taken place within outer space

NASA has reported that a cataclysmic event has taken place within outer space NASA has reported that a cataclysmic event has taken place within outer space, but they are either refusing or are unable to tell the public what it actually is.

The strange occurrence which originated from a galaxy 10.7 billion light years away was captured NASA’s Chandra X-ray Observatory.NASA said: “completely new type of cataclysmic event”.A NASA spokesman explained: “A mysterious flash of X-rays has been discovered by NASA’s Chandra X-ray Observatory in the deepest X-ray image ever obtained.The Express reports: “This source likely comes from some sort of destructive event in space, but may be of a variety that scientists have never seen before.”Report co-author Kevin Schawinski, of ETH Zurich in Switzerland, said: “We may have observed a completely new type of cataclysmic event.“Whatever it is, a lot more observations are needed to work out what we’re seeing.”The southern tip of Italy is visible in this image taken by the Expedition 49 crew aboard the International Space Station.

The brightly lit city of Naples can be seen in the bottom section of the imageFranz Bauer of the Pontifical Catholic University of Chile in Santiago said: “Ever since discovering this source, we’ve been struggling to understand its origin. “It’s like we have a jigsaw puzzle but we don’t have all of the pieces.”The X-ray source, located in a region of the sky known as the Chandra Deep Field-South (CDF-S), has remarkable properties.Prior to October 2014, this source was not detected in X-rays, but then it erupted and became at least a factor of 1,000 brighter in a few hours.After about a day, the source had faded completely below the sensitivity of Chandra.Thousands of hours of legacy data from the Hubble and Spitzer Space Telescopes helped determine that the event likely came from a faint, small galaxy about 10.7 billion lightyears from Earth.For a few minutes, the X-ray source produced a thousand times more energy than all the stars in this galaxy.

Two of the three main possibilities to explain the X-ray source invoke gamma-ray burst (GRB) events.GRBs are jetted explosions triggered either by the collapse of a massive star or by the merger of a neutron star with another neutron star or a black hole.If the jet is pointing towards the Earth, a burst of gamma rays is detected.As the jet expands, it loses energy and produces weaker, more isotropic radiation at X-ray and other wavelengths.Possible explanations for the CDF-S X-ray source, according to the researchers, are a GRB that is not pointed toward Earth, or a GRB that lies beyond the small galaxy.A third possibility is that a medium-sized black hole swallowed a white dwarf star.Co-author Ezequiel Treister, also of the Pontifical Catholic University, said: “None of these ideas fits the data perfectly.“But then again, we’ve rarely if ever seen any of the proposed possibilities in actual data, so we don’t understand them well at all.

”These stunning images from the Hubble Space Telescope are taken from the April 2015 issue of National Geographic Magazine.Astromoners have discovered a galaxy that formed just 400 million years after the Big Bang explosion, the most distant galaxy found to date Under the Wing The Small Magellanic Cloud (SMC), one of the Milky Way’s closest neighbors, appears as a Technicolor swirl in this composite image Pillars of Creation: images of the “Pillars of Creation” are among the most recognizable of the thousands the Hubble Space Telescope has created The Hubble Space Telescope revisited the subject of one of its most iconic images: the Eagle Nebula’s “Pillars of Creation”.

The 2015 image shows the pillars as seen in infrared light, which pierces through obscuring dust and gas to reveal a differeThe mysterious X-ray source was not seen at any other time during the two and a half months of exposure time Chandra has observed the CDF-S region, which has been spread out over the past 17 years.Moreover, no similar events have yet to be found in Chandra observations of other parts of the sky.If the X-ray source was caused by a GRB triggered by the merger of a neutron star with a black hole or another neutron star, then gravitational waves would also have been produced.If such an event were to occur much closer to Earth, within a few hundred million light years, it may be detectable with the Laser Interferometer Gravitational-Wave Observatory (LIGO).

Source:neonnettle.com

Gravitational Wave Kicks Monster Black Hole Out Of Galactic Core


Gravitational Wave Kicks Monster Black Hole Out Of Galactic Core

Gravitational Wave Kicks Monster Black Hole Out Of Galactic Core
Runaway black hole is the most massive ever detected far from its central home
Normally, hefty black holes anchor the centers of galaxies. So researchers were surprised to discover a supermassive black hole speeding through the galactic suburbs. Black holes cannot be observed directly, but they are the energy source at the heart of quasars — intense, compact gushers of radiation that can outshine an entire galaxy. NASA’s Hubble Space Telescope made the discovery by finding a bright quasar located far from the center of the host galaxy.Researchers estimate that it took the equivalent energy of 100 million supernovas exploding simultaneously to jettison the black hole. What could pry this giant monster from its central home? The most plausible explanation for this propulsive energy is that the monster object was given a kick by gravitational waves unleashed by the merger of two black holes as a result of a collision between two galaxies. First predicted by Albert Einstein, gravitational waves are ripples in the fabric of space that are created when two massive objects collide.

Astronomers have uncovered a supermassive black hole that has been propelled out of the center of a distant galaxy by what could be the awesome power of gravitational waves.

Though there have been several other suspected, similarly booted black holes elsewhere, none has been confirmed so far. Astronomers think this object, detected by NASA’s Hubble Space Telescope, is a very strong case. Weighing more than 1 billion suns, the rogue black hole is the most massive black hole ever detected to have been kicked out of its central home.

Researchers estimate that it took the equivalent energy of 100 million supernovas exploding simultaneously to jettison the black hole. The most plausible explanation for this propulsive energy is that the monster object was given a kick by gravitational waves unleashed by the merger of two hefty black holes at the center of the host galaxy.

First predicted by Albert Einstein, gravitational waves are ripples in space that are created when two massive objects collide. The ripples are similar to the concentric circles produced when a hefty rock is thrown into a pond. Last year, the Laser Interferometer Gravitational-Wave Observatory (LIGO) helped astronomers prove that gravitational waves exist by detecting them emanating from the union of two stellar-mass black holes, which are several times more massive than the sun.

Hubble’s observations of the wayward black hole surprised the research team. “When I first saw this, I thought we were seeing something very peculiar,” said team leader Marco Chiaberge of the Space Telescope Science Institute (STScI) and Johns Hopkins University, in Baltimore, Maryland. “When we combined observations from Hubble, the Chandra X-ray Observatory, and the Sloan Digital Sky Survey, it all pointed towards the same scenario. The amount of data we collected, from X-rays to ultraviolet to near-infrared light, is definitely larger than for any of the other candidate rogue black holes.”

Chiaberge’s paper will appear in the March 30 issue of Astronomy & Astrophysics.

Hubble images taken in visible and near-infrared light provided the first clue that the galaxy was unusual. The images revealed a bright quasar, the energetic signature of a black hole, residing far from the galactic core. Black holes cannot be observed directly, but they are the energy source at the heart of quasars – intense, compact gushers of radiation that can outshine an entire galaxy. The quasar, named 3C 186, and its host galaxy reside 8 billion light-years away in a galaxy cluster. The team discovered the galaxy’s peculiar features while conducting a Hubble survey of distant galaxies unleashing powerful blasts of radiation in the throes of galaxy mergers.

“I was anticipating seeing a lot of merging galaxies, and I was expecting to see messy host galaxies around the quasars, but I wasn’t really expecting to see a quasar that was clearly offset from the core of a regularly shaped galaxy,” Chiaberge recalled. “Black holes reside in the center of galaxies, so it’s unusual to see a quasar not in the center.”

The team calculated the black hole’s distance from the core by comparing the distribution of starlight in the host galaxy with that of a normal elliptical galaxy from a computer model. The black hole had traveled more than 35,000 light-years from the center, which is more than the distance between the sun and the center of the Milky Way.

Based on spectroscopic observations taken by Hubble and the Sloan survey, the researchers estimated the black hole’s mass and measured the speed of gas trapped near the behemoth object. Spectroscopy divides light into its component colors, which can be used to measure velocities in space. “To our surprise, we discovered that the gas around the black hole was flying away from the galaxy’s center at 4.7 million miles an hour,” said team member Justin Ely of STScI. This measurement is also a gauge of the black hole’s velocity, because the gas is gravitationally locked to the monster object.

The astronomers calculated that the black hole is moving so fast it would travel from Earth to the moon in three minutes. That’s fast enough for the black hole to escape the galaxy in 20 million years and roam through the universe forever.

The Hubble image revealed an interesting clue that helped explain the black hole’s wayward location. The host galaxy has faint arc-shaped features called tidal tails, produced by a gravitational tug between two colliding galaxies. This evidence suggests a possible union between the 3C 186 system and another galaxy, each with central, massive black holes that may have eventually merged.

Based on this visible evidence, along with theoretical work, the researchers developed a scenario to describe how the behemoth black hole could be expelled from its central home. According to their theory, two galaxies merge, and their black holes settle into the center of the newly formed elliptical galaxy. As the black holes whirl around each other, gravity waves are flung out like water from a lawn sprinkler. The hefty objects move closer to each other over time as they radiate away gravitational energy. If the two black holes do not have the same mass and rotation rate, they emit gravitational waves more strongly along one direction. When the two black holes collide, they stop producing gravitational waves. The newly merged black hole then recoils in the opposite direction of the strongest gravitational waves and shoots off like a rocket.

The researchers are lucky to have caught this unique event because not every black-hole merger produces imbalanced gravitational waves that propel a black hole in the opposite direction. “This asymmetry depends on properties such as the mass and the relative orientation of the back holes’ rotation axes before the merger,” said team member Colin Norman of STScI and Johns Hopkins University. “That’s why these objects are so rare.”

An alternative explanation for the offset quasar, although unlikely, proposes that the bright object does not reside within the galaxy. Instead, the quasar is located behind the galaxy, but the Hubble image gives the illusion that it is at the same distance as the galaxy. If this were the case, the researchers should have detected a galaxy in the background hosting the quasar.

If the researchers’ interpretation is correct, the observations may provide strong evidence that supermassive black holes can actually merge. Astronomers have evidence of black-hole collisions for stellar-mass black holes, but the process regulating supermassive black holes is more complex and not completely understood.

The team hopes to use Hubble again, in combination with the Atacama Large Millimeter/submillimeter Array (ALMA) and other facilities, to more accurately measure the speed of the black hole and its gas disk, which may yield more insight into the nature of this bizarre object.

The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C.

Source:http://hubblesite.org

Hubble has spotted mysterious balls of plasma shooting from a star.


NASA’s Hubble space telescope has detected plasma balls roughly twice the size of Mars being ejected near a dying star at speeds so rapid, it would take them only 30 minutes to travel from Earth to the Moon.

This mysterious ‘cannon fire’ has been detected in the region once every 8.5 years for at least the past 400 years, but this is the first time it’s ever been seen in action, and researchers think they might finally know where it’s coming from.

Plasma is super-hot ionised gas, and the reason these blasts are so confusing for astronomers is that there’s no way they can be coming from the dying star they originate near.

The star in question, called V Hydrae, is a bloated red giant that’s 1,200 light-years away, and it’s dying. It’s already shed at least half of its mass into space in its final death throes, and is now exhausting the rest of its nuclear fuel as it burns out – hardly a likely source of super hot, giant blobs of charged gas.

But the new Hubble data provide researchers with some insight into the strange phenomenon, and it turns out that these plasma cannonballs might explain another space mystery – planetary nebulae.
Planetary nebulae aren’t like regular nebula, which are the birthplace of stars. Instead, they’re swirling rings of glowing gas that are expelled by dead or dying stars. Each one is unique, but no one has been able to explain how they form.

Now NASA researchers suggest that the cannonballs may play a key role.

“We knew this object had a high-speed outflow from previous data, but this is the first time we are seeing this process in action,” said lead researcher Raghvendra Sahai, from NASA’s Jet Propulsion Laboratory in California.

“We suggest that these gaseous blobs produced during this late phase of a star’s life help make the structures seen in planetary nebulae.”

To figure this out, the team pointed the Hubble telescope at V Hydrae over an 11-year period, between 2002 and 2013.

This allowed them to capture the latest cannonball eruption back in 2011, using spectroscopy imaging to reveal information on the plasma’s velocity, temperature, location, and motion.

They were able to show a whole string of the huge plasma balls erupting from the region, each with a temperature of more than 9,400 degrees Celsius (17,000 degrees Fahrenheit) – almost twice as hot as the surface of the Sun.

While the team monitored these news cannonballs, they also mapped the distribution of old plasma blobs fired out as long ago as 1986, some of which were already 60 billion km  (37 billion miles) away from V Hydrae.

These plasma balls cool down and expand the further they get until they’re no longer detectable by Hubble.

So where are they coming from? Based on all this new data, the NASA team modelled several scenarios, and the one that made the most sense is that the cannonballs are being launched by an unseen companion star that orbits close to V Hydrae every 8.5 years, but isn’t seen by Hubble.

The model suggests that as the companion star enters V Hydrae’s outer atmosphere, it gobbles up all the material that V Hydrae is shedding in its death throes, and this material then settles around the companion star as an accretion disk that shoots out balls of plasma.

The researchers have recreated what that would look like below. Step 1 is the two stars orbiting each other. Step 2 shows the companion star orbiting into the red giant’s bloated  atmosphere and sucking up its material into an accretion disk.

In steps 3 and 4, blobs of hot plasma are being ejected from this accretion disk. This happens every 8.5 years as the companion star orbits into V Hydrae’s atmosphere.

hubblecannoball webNASA, ESA & A. Feild (STScI)

Not only could this explain the strange balls, it could also explain how bloated dying stars turn into beautiful, glowing planetary nebulae within just 200 to 1,000 years – which is an astronomical blink of an eye.

Hubble has captured images of planetary nebulae with a range of knotty structures with them, which looked a lot like jets of material ejected from accretion discs. But red giants don’t have accretion discs, so it never quite made sense. Now it’s possible that the knotty structures are produced by hidden companion stars.

“This model provides the most plausible explanation,” said Sahai. 

Another surprise from the study was that the plasma balls aren’t fired in the same direction every 8.5 years, it flip-flops slightly from side to side and back and forth, suggesting that there’s a wobble in the accretion disk.

This wobble means that sometimes the cannonballs would be shot out in front of V Hydrae (from Hubble’s perspective) and sometimes behind, and could explain why the star is obscured from view every 17 years.

“This discovery was quite surprising, but it is very pleasing as well because it helped explain some other mysterious things that had been observed about this star by others,” said Sahai.

More research is needed to verify this new hypothesis, and figure out the ultimate fate of the potential companion star and V Hydrae. But NASA will be watching closely to see what happens as the red giant eventually turns into a beautiful planetary nebula. There are worse ways to go.

Hubble peers at a distinctly disorganized dwarf galaxy


Hubble peers at a distinctly disorganized dwarf galaxy
Credit: ESA/Hubble and NASA

Despite being less famous than their elliptical and spiral galactic cousins, irregular dwarf galaxies, such as the one captured in this NASA/ESA Hubble Space Telescope image, are actually one of the most common types of galaxy in the universe. Known as UGC 4459, this dwarf galaxy is located approximately 11 million light-years away in the constellation of Ursa Major (The Great Bear), a constellation that is also home to the Pinwheel Galaxy (M101), the Owl Nebula (M97), Messier 81, Messier 82 and several other galaxies all part of the M81 group.

 UGC 4459’s diffused and disorganized appearance is characteristic of an irregular dwarf galaxy. Lacking a distinctive structure or shape, irregular dwarf galaxies are often chaotic in appearance, with neither a nuclear bulge—a huge, tightly packed central group of stars—nor any trace of spiral arms—regions of stars extending from the center of the galaxy. Astronomers suspect that some irregular dwarf galaxies were once spiral or , but were later deformed by the gravitational pull of nearby objects.

Rich with young blue stars and older red stars, UGC 4459 has a stellar population of several billion. Though seemingly impressive, this is small when compared to the 200 to 400 billion stars in the Milky Way!

Observations with Hubble have shown that because of their low masses of dwarf galaxies like UGC 4459, star formation is very low compared to larger galaxies. Only very little of their original gas has been turned into stars. Thus, these are interesting to study to better understand primordial environments and the process.

First complete 3D view of iconic Pillars of Creation released


The legendary space clouds known as The Pillars of Creation have revealed a whole lot of previously unseen things in a first-ever 3D view. The graceful, finger-like gas wonders can be glimpsed in stunning clarity in the accompanying video.

3D data visualisation of the Pillars of Creation (www.eso.org)

Mankind’s first encounter with the pillars happened in 1995, when the Hubble space telescope revealed the graceful gas protrusions, which are actually part of a region called the Eagle Nebula – a sort of star nursery, where violent births take place in clouds of gas. The radioactive stellar winds that are emitted when a birth takes place often disperse the gas around a new star, allowing for closer views.

But sometimes the clouds withstand these forces, obscuring the view. This happens in regions where the gas is more dense and full of stuff. Often, this battle of forces pushes the gas into peculiar shapes, such as the pillars.

An updated, higher-resolution view was provided in 2014, with the use of advanced new hardware. But this time, we’re getting a 3D rendition, which not only heightens the clarity but also allows scientists to more accurately place the finger-like clouds geographically in the nebula, as well as learn more about their distribution through the region.

The view was captured using the Multi Unit Spectroscopic Explorer (MUSE) instrument at the European Southern Observatory’s (ESO) Very Large Telescope (VLT).

Like any cloud that answers to the laws of physics, we also know the pillars are slowly dissolving, losing mass ‘rapidly’ – about 70 Suns’ worth every million years. Seeing as science puts their total current mass at about 200 Suns, it looks like we have three million years more to observer the colorful shapes.

Getting there is of course a dream – the region is some 7,000 light years away. But we can study the beautiful formations from a distance. With a distance so vast, there’s no telling if the pillars are even there anymore – some scientists posit the theory they were engulfed in a supernova some 6,000 years ago. If true, we wouldn’t know for another thousand years.

The new findings are outlined in the new issue of the Monthly Notices of the Royal Astronomical Society.

Watch the video. URL: https://youtu.be/uWklVPvk0C8

Beyond Hubble: Will Future Space Telescope Seek Alien Life by 2030?


The iconic Hubble Space Telescope turns 25 this month, and getting the ball rolling on a life-hunting successor instrument would be a fitting birthday present, one prominent researcher argues.

Hubble Space Telescope in Orbit

Hubble, a joint project of NASA and the European Space Agency (ESA), blasted off aboard the space shuttle Discovery on April 24, 1990. Spacewalking astronauts fixed a serious problem with the telescope’s optics in 1993, and Hubble has been transforming astronomers’ understanding of the cosmos — and bringing gorgeous images of the universe into laypeople’s lives —ever since.

“It has really allowed people to participate in the excitement of discovery,” said Mario Livio, an astrophysicist based at the Space Telescope Science Institute in Baltimore, which operates Hubble’s science program.

“Hubble images have become part of our culture,” Livio told Space.com. “I regard this as an incredible contribution.”

While the venerable Hubble will likely be able to keep studying the heavens for at least five more years, it’s now time to start planning out a future space telescope that will tackle the next big frontier in space science, Livio says — the search for signs of life beyond our neck of the cosmic woods.

“Hubble has taught us that to answer the most intriguing questions in astrophys­ics, we must think big and put scientific ambi­tion ahead of budgetary concerns,” he wrote in a commentary piece published online today (April 15) in the journal Nature.

“In my view, the next priority should be the search for life beyond our solar system,” Livio added. “A powerful space telescope that can spot biological signatures in the atmospheres of Earth-like exoplanets would be a worthy successor.”

Hubble’s immediate successor is NASA’s $8.8 billion James Webb Space Telescope (JWST).

billion James Webb Space Telescope (JWST), which is due to launch in 2018. The infrared-optimized JWST will be able to study the atmospheres of some nearby planets discovered by the Transiting Exoplanet Survey Satellite, or TESS, which NASA aims to launch in 2017.

The agency is also developing a potential space-telescope mission called WFIRST/AFTA (short for Wide Field Infra­red Survey Telescope–Astrophysics Focused Telescope Assets). WFIRST/AFTA, which could launch around 2024 if it gets the final go-ahead, would continue the hunt for biosignatures, among several other major tasks.

But Livio has something more ambitious in mind: A space telescope with a primary mirror at least 39 feet (12 meters) wide, with vision 25 times sharper than that of Hubble. (For comparison, the main mirrors of Hubble, WFIRST/AFTA and JWST are 7.9 feet [2.4 m], 7.9 feet and 21.3 feet [6.5 m] wide, respectively.)

Such a powerful instrument could scan the skies of enough Earthlike exoplanets to place “meaningful statistical constraints” on the abundance or rarity of alien life throughout the Milky Way galaxy, according to Livio.

“A large sample of planets — around 50 — would have to be tested,” he wrote in the Nature commentary. “Calculations show, for example, that if no biosignatures are detected in more than about three dozen Earth analogues, the probability of remotely detectable extrasolar life in our galactic neighborhood is less than about 10 percent.”

The Association of Universities for Research in Astronomy is expected to release a report this June on such a potential telescope, Livio wrote, urging the community to take action to help make the mission a reality.

“First, NASA, ESA and other potential international partners should convene a panel to examine such a project,” he wrote. “Technology-development studies should be accelerated to make a launch around 2030 plausible. The search for life must be prioritized in the next U.S. and international decadal surveys that guide national funding decisions about missions.”

Livio said he’s not advocating any particular design for such a space telescope; he just wants to inspire his colleagues to “think big,” and to build some momentum for a mission that could help humanity better understand its place in the universe.

“Many scientists would agree that the question of, ‘Is there extrasolar life?’ is one of the most intriguing questions in science today.” Livio told Space.com. “So let’s try to actually answer that question, and do what it takes to answer it, as opposed to maybe taking baby steps that would just push the answer into the more distant future.”

 

// <![CDATA[
(function(){var k=this,l=function(a,b){var c=a.split("."),d=k;c[0]in d||!d.execScript||d.execScript("var "+c[0]);for(var f;c.length&&(f=c.shift());)c.length||void 0===b?d=d[f]?d[f]:d[f]={}:d[f]=b},r=function(a){var b=typeof a;if("object"==b)if(a){if(a instanceof Array)return"array";if(a instanceof Object)return b;var c=Object.prototype.toString.call(a);if("[object Window]"==c)return"object";if("[object Array]"==c||"number"==typeof a.length&&"undefined"!=typeof a.splice&&"undefined"!=typeof a.propertyIsEnumerable&&!a.propertyIsEnumerable("splice"))return"array";if("[object Function]"==c||"undefined"!=typeof a.call&&"undefined"!=typeof a.propertyIsEnumerable&&!a.propertyIsEnumerable("call"))return"function"}else return"null";else if("function"==b&&"undefined"==typeof a.call)return"object";return b},aa=function(a,b,c){return a.call.apply(a.bind,arguments)},ba=function(a,b,c){if(!a)throw Error();if(2<arguments.length){var d=Array.prototype.slice.call(arguments,2);return function(){var c=Array.prototype.slice.call(arguments);Array.prototype.unshift.apply(c,d);return a.apply(b,c)}}return function(){return a.apply(b,arguments)}},t=function(a,b,c){t=Function.prototype.bind&&-1!=Function.prototype.bind.toString().indexOf("native code")?aa:ba;return t.apply(null,arguments)};var u="undefined"!=typeof DOMTokenList,v=function(a,b){if(u){var c=a.classList;0==c.contains(b)&&c.toggle(b)}else if(c=a.className){for(var c=c.split(/\s+/),d=!1,f=0;fc.indexOf(b))){for(var c=c.split(/\s+/),d=0;d<c.length;++d)c[d]==b&&c.splice(d–,1);a.className=c.join(" ")}};var x=String.prototype.trim?function(a){return a.trim()}:function(a){return a.replace(/^[\s\xa0]+|[\s\xa0]+$/g,"")},y=function(a,b){return ab?1:0};var ca=function(a){var b=window;b.addEventListener?b.addEventListener("load",a,!1):b.attachEvent&&b.attachEvent("onload",a)},z=function(a,b,c,d){c=t(d,c);a.addEventListener?a.addEventListener(b,c,!1):a.attachEvent&&a.attachEvent("on"+b,c)};var A=function(a){var b=arguments.length;if(1==b&&"array"==r(arguments[0]))return A.apply(null,arguments[0]);for(var c={},d=0;dparseFloat(a))?String(b):a}(),K={},L=function(a){if(!K[a]){for(var b=0,c=x(String(J)).split("."),d=x(String(a)).split("."),f=Math.max(c.length,d.length),e=0;0==b&&e<f;e++){var p=c[e]||"",n=d[e]||"",h=RegExp("(\\d*)(\\D*)","g"),g=RegExp("(\\d*)(\\D*)","g");do{var q=h.exec(p)||["","",""],m=g.exec(n)||["","",""];if(0==q[0].length&&0==m[0].length)break;b=y(0==q[1].length?0:parseInt(q[1],10),0==m[1].length?0:parseInt(m[1],10))||y(0==q[2].length,0==m[2].length)||y(q[2],m[2])}while(0==b)}K[a]=0<=b}},ha=k.document,ia=I(),ka=!ha||!G||!ia&&F()?void 0:ia||("CSS1Compat"==ha.compatMode?parseInt(J,10):5);var M;if(!(M=!H&&!G)){var N;if(N=G)N=G&&(F()||9<=ka);M=N}M||H&&L("1.9.1");G&&L("9");var ma=function(a,b,c){var d="mouseenter_custom"==b,f=la(b);return function(e){e||(e=window.event);if(e.type==f){if("mouseenter_custom"==b||"mouseleave_custom"==b){var p;if(p=d?e.relatedTarget||e.fromElement:e.relatedTarget||e.toElement)for(var n=0;n<a.length;n++){var h;h=a[n];var g=p;if(h.contains&&1==g.nodeType)h=h==g||h.contains(g);else if("undefined"!=typeof h.compareDocumentPosition)h=h==g||Boolean(h.compareDocumentPosition(g)&16);else{for(;g&&h!=g;)g=g.parentNode;h=g==h}if(h)return}}c(e)}}},la=function(a){return"mouseenter_custom"==a?"mouseover":"mouseleave_custom"==a?"mouseout":a};var na=function(){this.n=void 0},P=function(a,b,c){switch(typeof b){case "string":oa(b,c);break;case "number":c.push(isFinite(b)&&!isNaN(b)?b:"null");break;case "boolean":c.push(b);break;case "undefined":c.push("null");break;case "object":if(null==b){c.push("null");break}if("array"==r(b)){var d=b.length;c.push("[");for(var f="",e=0;e//

MILKY WAY CORE DRIVES WIND AT 2 MILLION MILES PER HOUR


150105182525-large

At a time when our earliest human ancestors had recently mastered walking upright, the heart of our Milky Way galaxy underwent a titanic eruption, driving gases and other material outward at 2 million miles per hour.

Now, at least 2 million years later, astronomers are witnessing the aftermath of the explosion: billowing clouds of gas towering about 30,000 light-years above and below the plane of our galaxy.

The enormous structure was discovered five years ago as a gamma-ray glow on the sky in the direction of the galactic center. The balloon-like features have since been observed in X-rays and radio waves. But astronomers needed NASA’s Hubble Space Telescope to measure for the first time the velocity and composition of the mystery lobes. They now seek to calculate the mass of the material being blown out of our galaxy, which could lead them to determine the outburst’s cause from several competing scenarios.

Astronomers have proposed two possible origins for the bipolar lobes: a firestorm of star birth at the Milky Way’s center or the eruption of its supermassive black hole. Although astronomers have seen gaseous winds, composed of streams of charged particles, emanating from the cores of other galaxies, they are getting a unique, close-up view of our galaxy’s own fireworks.

“When you look at the centers of other galaxies, the outflows appear much smaller because the galaxies are farther away,” said Andrew Fox of the Space Telescope Science Institute in Baltimore, Maryland, lead researcher of the study. “But the outflowing clouds we’re seeing are only 25,000 light-years away in our galaxy. We have a front-row seat. We can study the details of these structures. We can look at how big the bubbles are and can measure how much of the sky they are covering.”

Fox’s results will be published in The Astrophysical Journal Letters and will be presented at the American Astronomical Society meeting in Seattle, Washington.

The giant lobes, dubbed Fermi Bubbles, initially were spotted using NASA’s Fermi Gamma-ray Space Telescope. The detection of high-energy gamma rays suggested that a violent event in the galaxy’s core aggressively launched energized gas into space. To provide more information about the outflows, Fox used Hubble’s Cosmic Origins Spectrograph (COS) to probe the ultraviolet light from a distant quasar that lies behind the base of the northern bubble. Imprinted on that light as it travels through the lobe is information about the velocity, composition, and temperature of the expanding gas inside the bubble, which only COS can provide.

Fox’s team was able to measure that the gas on the near side of the bubble is moving toward Earth and the gas on the far side is travelling away. COS spectra show that the gas is rushing from the galactic center at roughly 2 million miles an hour (3 million kilometers an hour).

“This is exactly the signature we knew we would get if this was a bipolar outflow,” explained Rongmon Bordoloi of the Space Telescope Science Institute, a co-author on the science paper. “This is the closest sightline we have to the galaxy’s center where we can see the bubble being blown outward and energized.”

The COS observations also measure, for the first time, the composition of the material being swept up in the gaseous cloud. COS detected silicon, carbon, and aluminum, indicating that the gas is enriched in the heavy elements produced inside stars and represents the fossil remnants of star formation.

COS measured the temperature of the gas at approximately 17,500 degrees Fahrenheit, which is much cooler than most of the super-hot gas in the outflow, thought to be at about 18 million degrees Fahrenheit. “We are seeing cooler gas, perhaps interstellar gas in our galaxy’s disk, being swept up into that hot outflow,” Fox explained.

This is the first result in a survey of 20 faraway quasars whose light passes through gas inside or just outside the Fermi Bubbles — like a needle piercing a balloon. An analysis of the full sample will yield the amount of mass being ejected. The astronomers can then compare the outflow mass with the velocities at various locations in the bubbles to determine the amount of energy needed to drive the outburst and possibly the origin of the explosive event.

One possible cause for the outflows is a star-making frenzy near the galactic center that produces supernovas, which blow out gas. Another scenario is a star or a group of stars falling onto the Milky Way’s supermassive black hole. When that happens, gas superheated by the black hole blasts deep into space. Because the bubbles are short-lived compared to the age of our galaxy, it suggests this may be a repeating phenomenon in the Milky Way’s history. Whatever the trigger is, it likely occurs episodically, perhaps only when the black hole gobbles up a concentration of material.

“It looks like the outflows are a hiccup,” Fox said. “There may have been repeated ejections of material that have blown up, and we’re catching the latest one. By studying the light from the other quasars in our program, we may be able to detect the fossils of previous outflows.”

Galactic winds are common in star-forming galaxies, such as M82, which is furiously making stars in its core. “It looks like there’s a link between the amount of star formation and whether or not these outflows happen,” Fox said. “Although the Milky Way overall currently produces a moderate one to two stars a year, there is a high concentration of star formation close to the core of the galaxy.”

At a time when our earliest human ancestors had recently mastered walking upright, the heart of our Milky Way galaxy underwent a titanic eruption, driving gases and other material outward at 2 million miles per hour.

Now, at least 2 million years later, astronomers are witnessing the aftermath of the explosion: billowing clouds of gas towering about 30,000 light-years above and below the plane of our galaxy.

The enormous structure was discovered five years ago as a gamma-ray glow on the sky in the direction of the galactic center. The balloon-like features have since been observed in X-rays and radio waves. But astronomers needed NASA’s Hubble Space Telescope to measure for the first time the velocity and composition of the mystery lobes. They now seek to calculate the mass of the material being blown out of our galaxy, which could lead them to determine the outburst’s cause from several competing scenarios.

Astronomers have proposed two possible origins for the bipolar lobes: a firestorm of star birth at the Milky Way’s center or the eruption of its supermassive black hole. Although astronomers have seen gaseous winds, composed of streams of charged particles, emanating from the cores of other galaxies, they are getting a unique, close-up view of our galaxy’s own fireworks.

“When you look at the centers of other galaxies, the outflows appear much smaller because the galaxies are farther away,” said Andrew Fox of the Space Telescope Science Institute in Baltimore, Maryland, lead researcher of the study. “But the outflowing clouds we’re seeing are only 25,000 light-years away in our galaxy. We have a front-row seat. We can study the details of these structures. We can look at how big the bubbles are and can measure how much of the sky they are covering.”

Fox’s results will be published in The Astrophysical Journal Letters and will be presented at the American Astronomical Society meeting in Seattle, Washington.

The giant lobes, dubbed Fermi Bubbles, initially were spotted using NASA’s Fermi Gamma-ray Space Telescope. The detection of high-energy gamma rays suggested that a violent event in the galaxy’s core aggressively launched energized gas into space. To provide more information about the outflows, Fox used Hubble’s Cosmic Origins Spectrograph (COS) to probe the ultraviolet light from a distant quasar that lies behind the base of the northern bubble. Imprinted on that light as it travels through the lobe is information about the velocity, composition, and temperature of the expanding gas inside the bubble, which only COS can provide.

Fox’s team was able to measure that the gas on the near side of the bubble is moving toward Earth and the gas on the far side is travelling away. COS spectra show that the gas is rushing from the galactic center at roughly 2 million miles an hour (3 million kilometers an hour).

“This is exactly the signature we knew we would get if this was a bipolar outflow,” explained Rongmon Bordoloi of the Space Telescope Science Institute, a co-author on the science paper. “This is the closest sightline we have to the galaxy’s center where we can see the bubble being blown outward and energized.”

The COS observations also measure, for the first time, the composition of the material being swept up in the gaseous cloud. COS detected silicon, carbon, and aluminum, indicating that the gas is enriched in the heavy elements produced inside stars and represents the fossil remnants of star formation.

COS measured the temperature of the gas at approximately 17,500 degrees Fahrenheit, which is much cooler than most of the super-hot gas in the outflow, thought to be at about 18 million degrees Fahrenheit. “We are seeing cooler gas, perhaps interstellar gas in our galaxy’s disk, being swept up into that hot outflow,” Fox explained.

This is the first result in a survey of 20 faraway quasars whose light passes through gas inside or just outside the Fermi Bubbles — like a needle piercing a balloon. An analysis of the full sample will yield the amount of mass being ejected. The astronomers can then compare the outflow mass with the velocities at various locations in the bubbles to determine the amount of energy needed to drive the outburst and possibly the origin of the explosive event.

One possible cause for the outflows is a star-making frenzy near the galactic center that produces supernovas, which blow out gas. Another scenario is a star or a group of stars falling onto the Milky Way’s supermassive black hole. When that happens, gas superheated by the black hole blasts deep into space. Because the bubbles are short-lived compared to the age of our galaxy, it suggests this may be a repeating phenomenon in the Milky Way’s history. Whatever the trigger is, it likely occurs episodically, perhaps only when the black hole gobbles up a concentration of material.

NASA’s Chandra X-ray Observatory Celebrates 15th Anniversary.


Fifteen years ago, NASA’s Chandra X-ray Observatory was launched into space aboard the Space Shuttle Columbia. Since its deployment on July 23, 1999, Chandra has helped revolutionize our understanding of the universe through its unrivaled X-ray vision.

Four new Chandra images of supernova remnants

Chandra, one of NASA’s current “Great Observatories,” along with the Hubble Space Telescope and Spitzer Space Telescope, is specially designed to detect X-ray emission from hot and energetic regions of the universe.

With its superb sensitivity and resolution, Chandra has observed objects ranging from the closest planets and comets to the most distant known quasars. It has imaged the remains of exploded stars, or supernova remnants, observed the region around the supermassive black hole at the center of the Milky Way, and discovered black holes across the universe. Chandra also has made a major advance in the study of dark matter by tracing the separation of dark matter from normal matter in collisions between galaxy clusters. It also is contributing to research on the nature of dark energy.

To celebrate Chandra’s 15th anniversary, four new images of supernova remnants – the Crab Nebula, Tycho, G292.0+1.8, and 3C58 – are being released. These supernova remnants are very hot and energetic and glow brightly in X-ray light, which allows Chandra to capture them in exquisite detail.

“Chandra changed the way we do astronomy. It showed that precision observation of the X-rays from cosmic sources is critical to understanding what is going on,” said Paul Hertz, NASA’s Astrophysics Division director in Washington. “We’re fortunate we’ve had 15 years – so far – to use Chandra to advance our understanding of stars, galaxies, black holes, dark energy, and the origin of the elements necessary for life.”

Chandra orbits far above Earth’s X-ray absorbing atmosphere at an altitude up to 139,000 km (86,500 mi), allowing for long observations unobscured by Earth’s shadow. When it was carried into space in 1999, it was the largest satellite ever launched by the shuttle.

“We are thrilled at how well Chandra continues to perform,” said Belinda Wilkes, director of the Chandra X-ray Center (CXC) in Cambridge, Massachusetts. “The science and operations teams work very hard to ensure that Chandra delivers its astounding results, just as it has for the past decade and a half. We are looking forward to more ground-breaking science over the next decade and beyond.”

Originally called the Advanced X-ray Astrophysics Facility (AXAF), the telescope was first proposed to NASA in 1976. Prior to its launch aboard the shuttle, the observatory was renamed in honor of the late Indian-American Nobel laureate, Subrahmanyan Chandrasekhar. Known to the world as Chandra (which means “moon” or “luminous” in Sanskrit), he was widely regarded as one of the foremost astrophysicists of the 20th century.

“Chandra continues to be one of the most successful missions that NASA has ever flown as measured against any metric – cost, schedule, technical success and, most of all, scientific discoveries,” said Martin Weisskopf, Chandra Project Scientist at the Marshall Space Flight Center in Huntsville, Ala. “It has been a privilege to work on developing and maintaining this scientific powerhouse, and we look forward to many years to come.”