Peter Higgs: I wouldn’t be productive enough for today’s academic system.


Physicist doubts work like Higgs boson identification achievable now as academics are expected to ‘keep churning out papers’
  • Peter Higgs: 'Today I wouldn't get an academic job. It's as simple as that'.
Peter Higgs: ‘Today I wouldn’t get an academic job. It’s as simple as that’. Photograph: David Levene for the Guardian

Peter Higgs, the British physicist who gave his name to the Higgs boson, believes no university would employ him in today’s academic system because he would not be considered “productive” enough.

The emeritus professor at Edinburgh University, who says he has never sent an email, browsed the internet or even made a mobile phone call, published fewer than 10 papers after his groundbreaking work, which identified the mechanism by which subatomic material acquires mass, was published in 1964.

He doubts a similar breakthrough could be achieved in today’s academic culture, because of the expectations on academics to collaborate and keep churning out papers. He said: “It’s difficult to imagine how I would ever have enough peace and quiet in the present sort of climate to do what I did in 1964.”

Speaking to the Guardian en route to Stockholm to receive the 2013 Nobel prize for science, Higgs, 84, said he would almost certainly have been sacked had he not been nominated for the Nobel in 1980.

Edinburgh University’s authorities then took the view, he later learned, that he “might get a Nobel prize – and if he doesn’t we can always get rid of him”.

Higgs said he became “an embarrassment to the department when they did research assessment exercises”. A message would go around the department saying: “Please give a list of your recent publications.” Higgs said: “I would send back a statement: ‘None.’ ”

By the time he retired in 1996, he was uncomfortable with the new academic culture. “After I retired it was quite a long time before I went back to my department. I thought I was well out of it. It wasn’t my way of doing things any more. Today I wouldn’t get an academic job. It’s as simple as that. I don’t think I would be regarded as productive enough.”

Higgs revealed that his career had also been jeopardised by his disagreements in the 1960s and 70s with the then principal, Michael Swann, who went on to chair the BBC. Higgs objected to Swann’s handling of student protests and to the university’s shareholdings in South African companies during the apartheid regime. “[Swann] didn’t understand the issues, and denounced the student leaders.”

He regrets that the particle he identified in 1964 became known as the “God particle”.

He said: “Some people get confused between the science and the theology. They claim that what happened at Cern proves the existence of God.”

An atheist since the age of 10, he fears the nickname “reinforces confused thinking in the heads of people who are already thinking in a confused way. If they believe that story about creation in seven days, are they being intelligent?”

He also revealed that he turned down a knighthood in 1999. “I’m rather cynical about the way the honours system is used, frankly. A whole lot of the honours system is used for political purposes by the government in power.”

He has not yet decided which way he will vote in the referendum onScottish independence. “My attitude would depend a little bit on how much progress the lunatic right of the Conservative party makes in trying to get us out of Europe. If the UK were threatening to withdraw from Europe, I would certainly want Scotland to be out of that.”

He has never been tempted to buy a television, but was persuaded to watch The Big Bang Theory last year, and said he wasn’t impressed.

 

Advertisements

Is the Universe Unnatural?


There is a question that is beginning to haunt the world of science; it’s been rearing its ugly head for the last several decades. The question is simply, “is the universe unnatural?”

hadron

As most of you are aware, particle physicists at the Large Hadron Collider (LHC) announced in July of 2012 that they had finally discovered the elusive Higgs boson – that discovery has since been confirmed. The confirmation of the Higgs’ existence was one of the greatest triumphs of science in 2012, confirming the nearly 50-year-old theory that aims to explain how elementary particles have mass. Arkani-Hamed from the Institute for Advanced Study explained, “the fact that it was seen more or less where we expected to find it is a triumph for the experiment, it’s a triumph for the theory, and it’s an indication that physics works.”

This discovery, however, was a double edged sword.

The Higgs has gotten all of the media attention; however, quantum theories also suggest that scientists should have found a host of other particles along with the Higgs in order to really show that the whole theory makes sense. Thus far, these particles haven’t been found. That might not sound like a big deal, but without these accompanying particles, using our current understandings of quantum theory, the Higgs’ mass in reality is exponentially different than what is predicted by the modified theories.

Image Credit: ATA Wolerian Walawski

Of course, something somewhere is wrong. It could be that we are missing a piece of the puzzle that allows a Higgs boson with a mass 126 giga-electron-volts to exist (in contrast to 10,000,000,000,000,000,000 giga-electron-volt Higgs our math currently says should exist due to its interactions with other particles), or it could be that somewhere our math is fundamentally wrong, or the universe could simply be unnatural.

Naturalness” is a term coined by Albert Einstein, and it is used to describe the elegantly intricate laws of nature. In a natural universe, absolutely everything can be explained with the aid of mathematics. All of the constants of nature are refined by the physical laws of nature and the entire puzzle makes perfect sense. In a unnatural universe, the horrible idea that some of the fundamental laws of nature are an arbitrary byproducts of the random fluctuations in the fabric of spacetime becomes a reality.

The LHC has been nothing short of a revolutionary force in advancing our understanding of the cosmos. Many times, revolutionary understandings present uncomfortable truths; because the LHC did not find the particular zoo of particles scientists were looking for, it’s forcing a large number of physicists to grapple with the idea of an unnatural universe. Hope is not lost for a natural order though. The LHC will start smashing protons together again in 2015 in a final search for answers and naturalness. If the search turns up empty handed, what will happen then?

Image Credit: <a href="http://xkcd.com/171/">XKCD</a>

Firstly, it’s very probable that the multiverse theory will take center stage as one of the most plausible models explaining our universe. If the universe is unnatural, and contains arbitrary constants that allow for conditions in our universe perfect for life to arise, physicists reason that, in order to balance out the improbability of such a universe, there must be other universes with differing laws of physics. One such hypothesis containing a multiverse construct, string theory, theorizes about 10^500 multiverses exist. With so many universes, it is extremely likely that this random chance would eventually produce a life-favoring universe, and the rest is history.

String theory is an extremely polarizing hypothesis. You either love it or hate it. Edward Witten, also a physicist at the Institute of Advanced Study, said, “I would be personally happy if the multiverse interpretation is not correct, in part because it potentially limits our ability to understand the laws of physics.”

All of the weight of what happens next rests with the scientists at the LHC. Whatever they find (or, don’t find) in the next decade will fundamentally shape our understanding of absolutely everything. Scientists will probe the very heart of physics in an attempt to determine whether we live in an overly complicated standalone universe or if we simply exist in a very friendly bubble in a larger multiverse.

In case the doors of unnaturalness and naturalness both seem unfavorable, some physicists have envisioned a third door for a modified naturalness. The main proponents of this model are Joe Lykken of the Fermi National Accelerator Laboratory in Batavia, Illinois and Alessandro Strumia of the University of Pisa in Italy. The basic premise of this hypothesis suggests that scientists are misjudging the affects of other particles on the mass of the Higgs boson. Their idea is far from airtight, when additional particles are thrown in, such as dark matter, the model falters.

Image <a href="http://www.zmescience.com/science/physics/higgs-boson-search-continues-01082012/">source</a>

Strumia has said that he isn’t an advocate of the modified naturalness hypothesis, but he wants to open a discussion for the consequences of such a theory. Even though it has problems now, the same line of thinking could help to resolve some of the problems of seemingly arbitrary constants. Modified naturalness, and naturalness for that matter, has a much larger problem standing in the way. Neither can adequately explain why the universe didn’t annihilate itself in the big bang.

Is the universe natural, unnatural, or does it have a modified naturalness? The most exciting thing about that question is that we are on the brink of having an answer. Whether the answer is comfortable or uncomfortable, pleasant or unpleasant, desirable or undesirable, we are poised to head into a new era of scientific understanding.

The Higgs Boson And A ‘New Physics’ –”Could Make The Speed Of Light Possible”.


god

Scientists hailed CERN’s confirmation of the Higgs Boson in July of 2012, speculating that it could one day make light speed travel possible by “un-massing” objects or allow huge items to be launched into space by “switching off” the Higgs. CERN scientist Albert de Roeck likened it to the discovery of electricity, when he said humanity could never have imagined its future applications.

CERN physicists hope that the “new physics” will provide a more straightforward explanation for the characteristics of the Higgs boson than that derived from the current Standard Model. This new physics is sorely needed to find solutions to a series of yet unresolved problems, as presently only the visible universe is explained, which constitutes just four percent of total matter.

“The Standard Model has no explanation for the so-called dark matter, so it does not describe the entire universe – there is a lot that remains to be understood,” says Dr. Volker Büscher ofJohannes Gutenberg University Mainz (JGU).

Scientists hailed CERN’s confirmation of the Higgs Boson in July of 2012, speculating that it could one day make light speed travel possible by “un-massing” objects or allow huge items to be launched into space by “switching off” the Higgs. CERN scientist Albert de Roeck likened it to the discovery of electricity, when he said humanity could never have imagined its future applications.

CERN physicists hope that the “new physics” will provide a more straightforward explanation for the characteristics of the Higgs boson than that derived from the current Standard Model. This new physics is sorely needed to find solutions to a series of yet unresolved problems, as presently only the visible universe is explained, which constitutes just four percent of total matter.

“The Standard Model has no explanation for the so-called dark matter, so it does not describe the entire universe – there is a lot that remains to be understood,” says Dr. Volker Büscher ofJohannes Gutenberg University Mainz (JGU).

The discovery of the long-sought Higgs boson, an elusive particle thought to help explain why matter has mass, was hailed as a huge moment for science by physicists. In July of 2012, CERN, the European Organization for Nuclear Research in Geneva, announced the discovery of a new particle that could be the long sought-after Higgs boson. The particle has a mass of about 126 gigaelectron volts (GeV), roughly that of 126 protons.

The new evidence came from an enormously large volume of data that has been more than doubled since December 2011. According to CERN, the LHC collected more data in the months between April and June 2012 than in the whole of 2011. In addition, the efficiency has been improved to such an extent that it is now much easier to filter out Higgs-like events from the several hundred million particle collisions that occur every second.

The existence of the Higgs boson was predicted in 1964 and it is named after the British physicistPeter Higgs. It is the last piece of the puzzle that has been missing from the Standard Model of physics and its function is to give other elementary particles their mass. According to the theory, the so-called Higgs field extends throughout the entire universe. The mass of individual elementary particles is determined by the extent to which they interact with the Higgs bosons.

“The discovery of the Higgs boson represents a milestone in the exploration of the fundamental interactions of elementary particles,” said Professor Dr. Matthias Neubert, Professor for TheoreticalElementary Particle Physics and spokesman for the Cluster of Excellence PRISMA at JGU.

On the one hand, the Higgs particle is the last component missing from the Standard Model of particle physics. On the other hand, physicists are struggling to understand the detected mass of the Higgs boson. Using theory as it currently stands, the mass of the Higgs boson can only be explained as the result of a random fine-tuning of the physical constants of the universe at a level of accuracy of one in one quadrillion.

The Higgs helps explains how the world could be the way that it is in the first millionth of a second in the Big Bang.

Physicist Ray Volkas said “almost everybody” was hoping that, rather than fitting the so-called Standard Model of physics — a theory explaining how particles fit together in the Universe — the Higgs boson would prove to be “something a bit different”.

“If that was the case that would point to all sorts of new physics, physics that might have something to do with dark matter,” he said, referring to the hypothetical invisible matter thought to make up much of the universe.

It could be that the Higgs particle acts as a bridge between ordinary matter, which makes up atoms, and dark matter, which we know is a very important component of the universe.

“That would have really fantastic implications for understanding all of the matter in the universe, not just ordinary atoms,” he added. De Roeck said scrutinising the new particle and determining whether it supported something other than the Standard Model would be the next step for CERN scientists.

Definitive proof that it fit the Standard Model could take until 2015 when the LHC had more power and could harvest more data.

Instead, De Roeck was hoping it would be a “gateway or a portal to new physics, to new theories which are actually running nature” such as supersymmetry, which hypothesises that there are five different Higgs particles governing mass.

For the image at the top of the page, two teams of astronomers used data from NASA’s Chandra X-ray Observatory and other telescopes to map the distribution of dark matter in a galaxy cluster known as Abell 383, which is located about 2.3 billion light years from Earth. Not only were the researchers able to find where the dark matter lies in the two dimensions across the sky, they were also able to determine how the dark matter is distributed along the line of sight. Several lines of evidence indicate that there is about six times as much dark matter as “normal”, or baryonic, matter in the Universe. Understanding the nature of this mysterious matter is one of the outstanding problems in astrophysics.

Galaxy clusters are the largest gravitationally-bound structures in the universe, and play an important role in research on dark matter and cosmology, the study of the structure and evolution of the universe. The use of clusters as dark matter and cosmological probes hinges on scientists’ ability to use objects such as Abell 383 to accurately determine the three-dimensional structures and masses of clusters.

US sees stronger hints of Higgs.


Hints of the Higgs boson detected last year by a US “atom smasher” have become even stronger, scientists have said.

The news comes amid fevered speculation about an announcement by researchers at the Large Hadron Collider on Wednesday.

Finding the particle would fill a glaring hole in the widely accepted theory of how the Universe works.

This 30-year hunt is reaching an end, with experts confident they will soon be able to make a definitive statement about the particle’s existence.

The latest findings have come from analysis of data gathered by the US Tevatron particle accelerator, which was shut down at the end of last year.

Researchers squeezed the last information out of hundreds of trillions of collisions produced by the Tevatron – which was based at the Fermi National Accelerator Laboratory (Fermilab) in Illinois – since March 2001.

This final analysis of the data does not settle the question of whether the Higgs particle exists, but gets closer to an answer.

The scientists see hints of the boson in roughly the same part of the “search region” as the LHC – between the masses of 115 and 135 Gigaelectronvolts (GeV).

The signal is seen at the 2.9-sigma level of certainty, which means there is roughly a one in 1,000 chance that the result is attributable to some statistical quirk in the data.

In particle physics, three sigma counts as “evidence”. Claiming a discovery requires a statistical certainty of five sigma – which denotes a one in a million chance that any given result is a fluke.

Sniffing success

Fermilab’s Rob Roser, co-spokesperson for the Tevatron’s CDF experiment, said: “Our data strongly point toward the existence of the Higgs boson, but it will take results from the experiments at the Large Hadron Collider in Europe to establish a discovery.”

Stefan Soldner-Rembold, professor of particle physics at the University of Manchester, told BBC News: “The evidence is piling up… everything points in the direction that the Higgs is there.”

 

He added: “At the Tevatron a lot of important work has been done over the last years… it has been essential for arriving at this stage.

“So yes, the Tevatron experiments should get recognition for that, even though the LHC will be the collider to provide the final proof that the Higgs exists.”

The Higgs is the cornerstone of the Standard Model – the most successful theory to explain the workings of the Universe – and explains why all other particles have mass.

But it remains on the run; though it is predicted to exist, the particle has never been detected experimentally.

If the LHC confirms the boson’s existence, physicists will set about the task of working out whether or not it is the version of the Higgs predicted by the Standard Model.

Many researchers will hope it is not, because that would hint at phenomena outside our current understanding of physics.

The Higgs cannot be seen directly; physicists have to infer its existence by looking at the particles it has ultimately decayed – or transformed – into, and work backwards to “reconstruct” it.

The Tevatron and the LHC look for the boson in different ways. The LHC is expected to present evidence for a Higgs transforming into two photons – the rarest decay path predicted by theory.

The Tevatron appears to see hints of a Higgs transforming into particles known as b quarks – the most common type of decay.

Combining information from both accelerators will provide vital clues about the nature of this potential new particle, and whether it is really the Higgs boson scientists expect.

Most researchers now regard the Standard Model as a stepping stone to some other, more complete theory, which can explain phenomena such as dark matter and dark energy.

A non-conformist Higgs could open the door to a theory called supersymmetry – which predicts that each Standard Model particle is accompanied by a heavier partner known as a “sparticle”. Or it could hint at the existence of extra dimensions.

For physicists, these would be more exciting outcomes, and would keep them busy for many years to come.

Source: BBC.