Germany Opens New ‘Fake Sun’ Hydrogen Producing Facility


The world’s ‘largest official sun’ has just been exposed over in Julich, Germany in the Synlight building. Spanning an area of 45 feet by 52 feet on one wall of the building are 140 Xenon short-arc lamps. When these lamps are flicked on, and all are pointed at the same 20 x 20 cm area, they create a light so intense it more than 10,000 brighter than any solar radiation found on Earth, with a core temperature of over 3,000 degrees Celsius.

It’s been set up this way to mimic largely concentrated power plants that use a whole field of mirrors to focus sunlight on one particular area where it melts salt that’s then used to generate electricity through the steam it creates. Researchers are the German Aerospace Center, also known as DLR, think this same method can be used to extract hydrogen from water vapor. If successful, this could revolutionize the solar power industry by introducing a new cost efficient process that’s capable of supplying a constant source of a great, safe renewable energy – hydrogen.

 

The only problem now is figuring out how to do it. Although it sounds good on paper, researchers haven’t quite succeeded in making it work. So now for the team, it’s a case of lots of tinkering with the artificial light they do have to see how the best way to go about this is. It’s not the first hydrogen project to go underway. Several before it including artificial photosynthesis and biomass reactions have tried and failed, so now it’s over to the ‘fake sun’ to see what it can do.

Wath the video. URL:https://youtu.be/yMXAihLk9JM

Source:http://www.trendintech.com

Germany poised to say yes to €1.1m a patient gene therapy drug


A laboratory technician examines blood samples
The western world’s first gene therapy drug is expected to go on sale in Germany next year.

The western world’s first gene therapy drug is set to go on sale in Germany, with a price tag that could amount to an £870,000 cost to treat a single patient.

Glybera, a treatment for the rare genetic condition lipoprotein lipase deficiency (LPLD), which clogs the blood with fat, has been developed by Dutch biotech firm UniQure and Italian MARKETING marketing partner Chiesi. It is undergoing an assessment of benefits by Germany’s federal joint committee, which will report by April 2015.

But the company is seeking a retail price of €53,000 (£42,000) per phial, which equates to €1.1m (£870,000) for a course of treatment for a typical LPLD patient. This price will be subject to a discount under Germany’s drug pricing system.

A Chiesi spokeswoman confirmed the launch price and added that a final figure would be set after the German authorities gave their verdict and negotiations are held with health insurance FUNDS. “First commercial treatments are expected in the first half of 2015,” she said.

UniQure, which will get a net royalty of between 23% and 30% on sales, said EU pricing was a matter for its Italian partner, although the Dutch firm does plan to discuss Glybera pricing during an investor meeting in New York next month.

With only 150 to 200 patients likely to be eligible for Glybera across Europe, the impact on healthcare budgets will be small, even at a very high price – but this case will be watched closely as a benchmark for future gene therapies.

UniQure also has plans to seek approval for Glybera in the United States, which it hopes to get in 2018.

Although there is already a gene therapy for cancer on the MARKETin China, that has not been rolled out to other countries, making Glybera a first for the west.

Proponents of the gene-fixing technology insist it stacks up as a cost-effective treatment, despite the high cost, as it could permanently cure many patients.

In the case of Glybera, Chiesi said the annualised cost was no morethan that charged for some expensive enzyme replacement therapies.

UniQure is also working on gene treatments for haemophilia and has an early-stage project in heart failure.

Assuming trials are successful, analysts expect gene medicines treating more common conditions to cost less, as manufacturers should be able to recoup their research and development INVESTMENT from a larger patient group.

Rivals in the gene therapy MARKET include privately-owned Spark Therapeutics, which has an eye drug in late-stage clinical tests, and Bluebird Bio, which is working on drugs for neurological and blood disorders.

Bluebird Bio and UniQure both staged successful floats on the Nasdaq MARKET in the past 18 months, reflecting growing investor interest in the field. Among major pharmaceutical companies, Bayer struck a gene therapy deal with Dimension Therapeutics in June, while Novartis recently established a new cell and gene therapies unit, and Sanofi has a long-standing tie-up with Oxford BioMedic.

Scientists line up unruly gas molecules for X-rays.


It’s hard to study individual molecules in a gas because they tumble around chaotically and never sit still. Researchers at SLAC overcame this challenge by using a laser to point them in the same general direction, like compass needles responding to a magnet, so they could be more easily studied with an X-ray laser.

The experiment with SLAC’s Linac Coherent Light Source (LCLS), reported Dec. 6 in Physical Review A, is a key step toward producing movies that show how a single molecule changes during a chemical reaction. Understanding the many stages of a reaction could help scientists design more efficient, controllable reactions for important industrial processes, many of which rely on gases that react with solids.

“This is the ‘trailer’ for the molecular movie – these are the first frames,” said Daniel Rolles of the Center for Free-Electron Laser Science at DESY national laboratory in Germany, who led the experiment. “People know, theoretically, that molecules do all kinds of weird things. If you can see the changes and check the theory, then you can understand how it’s happening and have a handle on controlling it.”

In the experiment, researchers jetted a thin stream of fluorocarbon gas into the path of two intersecting lasers: an optical laser that polarized the molecules – aligning them along a common axis, like a spinning top with a slight wobble – and the LCLS X-ray laser.

Fluorocarbon molecules were chosen because their chemical makeup allows them to be polarized by the electric field of a laser and because they are somewhat complex; each features a ringed structure and a tail-like spur and contains more than a dozen atoms. This makes them a good test case for future studies of even larger molecules.

https://i0.wp.com/cdn.physorg.com/newman/gfx/news/2013/2-scientistsli.jpg
This diagram shows the setup for an experiment at SLAC’s Linac Coherent Light Source that positioned fluorocarbon molecules along a common axis with an optical laser and then used X-ray laser pulses to explore their structural details. The molecules were first channeled into a narrow molecular beam. The optical laser and X-ray laser intersected the path of this gas beam (center). The ball-and-stick structure of the molecule is shown at the upper left. Detectors captured the fingerprint of fluorine atoms and electrons that were ejected from the molecules by the X-ray pulses, which were used to understand the original shape of the molecules. Credit: Phys. Rev. A 88, 061402(R), 2013

The X-ray laser was carefully tuned so it would eject electrons mostly from the fluorine atoms in the sample before bursting the molecules into charged fragments. Scientists measured the freed fluorine electrons and charged fluorine fragments with sensitive detectors, and sorted and analyzed this data to reconstruct the original shape and structure of the molecules. Even though each X-ray laser pulse hit many molecules, the angles of the ejected electrons revealed details about the structure of individual molecules.

The LCLS X-ray is uniquely suited for this type of atomic-scale chemical study because it allows scientists to pinpoint a particular element in a molecule that they want to study, Rolles said.

“This is element and site specific: We can pick one place in a molecule and image that environment,” he said.” It’s like singling out one type of tree that otherwise would be hidden by the forest around it.” That selectivity can allow scientists to zero in on areas of particular interest in a chemical reaction.

Laser alignment of molecules, first demonstrated in 1999, is still a very young field, and the ultrafast X-ray pulses from the LCLS could allow scientists to study changes in aligned molecules that occur in quadrillionths of a second – a far shorter timescale than possible with other research tools. While not all molecules can be aligned with lasers, the researchers note that a rich assortment of molecules is suited to the technique.

If researchers could achieve fuller, three-dimensional alignment of molecules – like stopping a spinning top with your finger and rotating it to face you in a certain way – they would have an even easier time measuring their properties and determining their structure. “You could solve the structure of an individual molecule even without prior knowledge of its shape,” said John Bozek, an LCLS staff scientist who participated in the experiment, adding that this could be useful for studying the intermediate stages of a chemical reaction.

Emil von Behring: The Founder of Serum Therapy.


Upbringing and Education

Emil Behring (1854-1917) was born on March 15, 1854 in Hansdorf, West Prussia, as the first child of the couple August and Auguste Behring. His father was a village school teacher, who during his first marriage had had four children and after the birth of Emil had another eight children.

A talented pupil, Emil Behring was above all assisted by the village minister, who made it possible for him to attend the Gymnasium (High School) in the village Hohenstein. His orientation as a theology student appeared to have changed after a friend who was a military doctor arranged for him to start his medical studies at the University of Berlin. He obtained a scholarship and from 1874 through 1878 he studied at the Academy for Military Doctors at the Royal Medical-Surgical Friedrich-Wilhelm-Institute, where he also earned his medical degree. In the following years he had to perform as a military doctor and also worked as a troop doctor in various garrisons. After having been assigned as captain of the medical corps to the Pharmacological Institute at the University of Bonn, he was given a position at the Hygiene Institute of Berlin in 1888 as an assistant to Robert Koch (1843-1910), one of the pioneers of bacteriology. During this time, Behring’s first authoritative publication on diphtheria and tetanus serum therapy appeared.

Behring
Emil von Behring in a military uniform.
Photo: Courtesy of Aventis Behring

The Behring Family

During his early years as a military doctor, Behring’s income was not sufficient for him to think about starting a family. Only in 1896, when he had a regular salary, did he marry the 20 year old Else Spinola. They went on a three-month honeymoon to the island of Capri. Else, born August 30, 1876 in Berlin, was the daughter of Werner Spinola, Administrative Director of Charité, the university medical clinic in Berlin.

In 1898, after having become professor at the University in Marburg (then part of Prussia), Behring moved with his family into a house in Wilhelm-Roser-Strasse in Marburg, where his six sons were born. Behring was a family man, though rather patriarchal, which at that time was quite normal. In the circle of his family he felt content, although his scientific work presumably did not leave him much time for his wife and children.

wedding photo
Wedding picture of Emil and Else von Behring.
Photo: Courtesy of Aventis Behring

On March 31, 1917, Behring died and was entombed in a mausoleum at the Marburg Elsenhöhe. After Behring’s death, Else von Behring served as chairwoman of the Women’s National Organisation in Marburg, Germany. She died in 1936 of a heart attack at the age of only 59.

Family and Friends

On the list of his sons’ godfathers, it appears obvious who stood closest to Emil von Behring besides his family. His first son, Fritz, had the bacteriologist Friedrich Loeffler (1852-1915) and Behring’s friend and co-worker, Erich Wernicke as godfathers. The godfather of his third son, Hans, was the Prussian Under-Secretary of Education and Cultural Affairs, Friedrich Althoff. His fifth son, Emil, had as a godfather the Russian researcher Elias Metschnikoff (1845-1916), founder of the theory of phagocytosis, with whom Behring had continuous scientific exchange of ideas. Emil’s second godfather was the pupil of Louis Pasteur, Émile Roux (1853-1933), who like Behring Sr. dealt with the fight against diphtheria. In 1913, the godfather of his sixth son, Otto, was the physician Ludolph Brauer (1865-1951), who had taught together with Behring at the Marburg Medical Faculty as a professor of internal medicine.

The Development of the Diphtheria-Therapeutic-Serum

Behring, who in the early 1890s became an assistant at the Institute for Infectious Diseases, headed by Robert Koch, started his studies with experiments on the development of a therapeutic serum. In 1890, together with his university friend Erich Wernicke, he had managed to develop the first effective therapeutic serum against diphtheria. At the same time, together with Shibasaburo Kitasato he developed an effective therapeutic serum against tetanus.

Behring and colleagues
Behring together with his colleagues Wernicke (left) and Frosch (center) in Robert Koch’s laboratory in Berlin.
Photo: Courtesy of Aventis Behring

The researchers immunized rats, guinea pigs and rabbits with attenuated forms of the infectious agents causing diphtheria and alternatively, tetanus. The sera produced by these animals were injected into non-immunized animals that were previously infected with the fully virulent bacteria. The ill animals could be cured through the administration of the serum. With the blood serum therapy, Behring and Kitasato firstly used the passive immunization method in the fight against infectious diseases. The particularly poisonous substances from bacteria – or toxins – could be rendered harmless by the serum of animals immunized with attenuated forms of the infectious agent through antidotes or antitoxins.

Kitasato
Shibasaburo Kitasato.
Photo: Courtesy of Aventis Behring

The Introduction of Serum Therapy

The first successful therapeutic serum treatment of a child suffering from diphtheria occurred in 1891. Until then more than 50,000 children in Germany died yearly of diphtheria. During the first few years, there was no successful breakthrough for this form of therapy, as the antitoxins were not sufficiently concentrated. Not until the development of enrichment by the bacteriologist Paul Ehrlich (1854-1915) along with a precise quantification and standardization protocol, was an exact determination of quality of the antitoxins presented and successfully developed. Behring subsequently decided to draw up a contract with Ehrlich as the foundation of their future collaboration. They organized a laboratory under a railroad circle (Stadtbahnbogen) in Berlin, where they could then obtain the serum in large amounts by using large animals – first sheep and later horses.

In 1892, Behring and the Hoechst chemical and pharmaceutical company at Frankfurt/Main, started working together, as they recognized the therapeutic potential of the diphtheria antitoxin. From 1894, the production and marketing of the therapeutic serum began at Hoechst. Besides many positive reactions, there was also noticeable criticism. Resistance, however, was soon put aside, due to the success of the therapy.

The Marburg Years

Behring was given the opportunity to start a university career through one of the leading officers (Ministerialrat) of the Prussian Ministry of Education and Cultural Affairs, Friedrich Althoff (1839-1908), who wanted to improve the control of epidemics in Prussia by supporting bacteriological research. After a short period as professor at the University of Halle-Wittenberg, Behring was recruited by Althoff to take over the vacant chair in hygiene at Philipps Marburg University on April 1, 1895. His appointment as full professor followed shortly thereafter against the will of the faculty, who besides all of Behring’s outstanding discoveries, wanted a university lecturer who would broadly represent the field. However, Althoff rejected all counterproposals and Behring took over as Director of the Institute of Hygiene at Marburg. His position included giving lectures for hygiene and concurrently held a teaching contract in the history of medicine. In 1896, the Marburg Institute of Hygiene moved to a building on a road nearby Pilgrimstein Road, previously the Surgery Clinic. Behring divided the Institute into two departments, a Research Department for Experimental Therapy and a Teaching Department for Hygiene and Bacteriology. He remained Director of the Institute until his retirement as professor in May 1916.

Scientific Contacts

Behring belonged to a scientific discussion group called “The Marburg Circle” (das Marburger Kränzchen), whose other members were the zoologist Eugen Korschelt (1858-1946), the surgeon Paul Friedrich (1864-1916), the botanist Arthur Meyer (1850-1922), the physiologist Friedrich Schenk (1862-1916), the pathologist Carl August Beneke (1861-1945) and the pharmacologist August Gürber (1864-1937). They often met at Behring’s home where they had rounds of vivid and prolific scientific discussions.

Active Protective Vaccination against Diphtheria

vials
Old vials (1897 and 1906) with hand-written labels.
Photo: Courtesy of Aventis Behring

The therapeutic serum developed by Behring prevented diphtheria for only a short period of time. In 1901, Behring, therefore, for the first time, used a diphtheria innoculation of bacteria with reduced virulence. With this active immunization he hoped to help the body also produce antitoxins. As a supporter of the humoral theory of immune response, Behring believed in the long-term protective action of these antitoxins found in serum. It is well-established knowledge today that active vaccination stimulates the antitoxin (antibody) producing cells to full function.

The development of an active vaccine took a few years. In 1913, Behring went public with his diphtheria protective agent, T.A. (Toxin-Antitoxin). It contained a mixture of diphtheria toxin and therapeutic serum antitoxin. The toxin was meant to cause a light general response of the body, but not to harm the person who is vaccinated. In addition, it was designed to provide long-term protection. The new drug was tested at various clinics and was proven to be non-harmful and effective.

Tetanus Therapeutic Serum during World War I

In 1891, tetanus serum was introduced considerably more quickly in clinical practices than the diphtheria serum. The Agricultural Ministry supported research efforts to develop a therapeutic agent against tetanus to protect agriculturally valuable animals. The large amounts of serum required were obtained through the immunization of horses. However, there was no substantial clinical testing on humans; this led the Military Administration to accept it only on a small scale at the beginning of World War I.

During the first months of the war, this restraint led to massive losses of human lives. Also, after the distribution of the tetanus antitoxins in the military hospitals, many futile attempts at therapy were noted. At the end of 1914, as a result of Behring’s constructive assistance, the injection of serum was established as preventing disease. Starting in April 1915, the mistakes in dosage and the shortage of supplies were overcome and the numbers of sick fell dramatically. Behring was declared “Saviour of the German Soldiers” and was awarded the the Prussian Iron Cross medal.

engraving
Historical engraving showing how the medicinal serum was obtained from immunized horses.
Photo: Courtesy of Aventis Behring

An Attempt to Develop a Therapeutic Method against Tuberculosis

After Robert Koch had failed with his tuberculosis therapy in 1893, Behring began to search for an effective therapeutic agent against this disease. However, very soon, he had to admit that combating tuberculosis using a healing serum was not feasible. Therefore, he concentrated on working on a preventive vaccination, which, however, required precise knowledge of the mechanism of infection. In Behring’s view, the tubercle bacillus was transmitted to children through the milk of a mother or a cow infected with tuberculosis. He then started treating milk with formaldehyde, so as to eliminate this source of infection. This procedure was not accepted due to the bad smell of the milk. Moreover, the transmission of tubercle bacilli through the respiratory tract was proven to be more likely than through the digestive system, as had been claimed by Behring.

From 1903, Behring worked on active immunization through attenuated tuberculosis infectious agents, which he then tried on cows, however, with only moderate success. His aim was to obtain a protective and therapeutic agent for humans. A number of agents (tuberculase, tulase, tulaseactin, tulon) failed to make a breakthrough. At the beginning of World War I, Behring halted his efforts to combat tuberculosis and dedicated himself entirely to the further development of tetanus serum.

Behring’s Relationship to Paul Ehrlich

Paul Ehrlich was Behring’s colleague at Robert Koch’s institute. Here, he was able to work out a reliable and reproducible standardization method for diphtheria serum. However, in later years, tension developed between the two researchers. Differences with Ehrlich’s pupil, Hans Aronson, resulted in bad feelings, which increased when Ehrlich’s Royal Institute of Experimental Therapy was founded at Frankfurt/Main. The previous friendship between the two researchers never fully succumbed, through the mediation of Friedrich Althoff. However, it was subsequently demonstrated that the only photograph showing Behring and Ehrlich together, which appeared on the cover of a Berlin newspaper on the occasion of their 60th birthday in 1914, was a photomontage made up of two separate photographs.

report
Report of the Berliner Illustrirte Zeitung (Berlin Illustrated Newspaper) about Emil von Behring and Paul Erlich and their work on the occasion of their 60th birthday.
Photo: Courtesy of Aventis Behring

Behring’s Health

Behring lived entirely for his idea of revolutionizing medicine through serum therapy. This idea hung above him and motivated him, in his own words, “like a demon.” His enormous concentration on his work often drove him to physical illnesses, as well as to deep depressions, which forced him to take time off work for a sanatorium stay from 1907 through 1910.

Acknowledgements and Honors

In 1903, Emil von Behring was given the title of “Wirklicher Geheimer Rat mit dem Prädikat Excellenz” by the German emperor Wilhelm II. The diploma says: “This is in order that Behring should remain in unbroken loyalty to Myself and the Royal Family and to fulfill his official responsibility with continuous eagerness, whereby he who has the right connected to his present character, will receive the highest protection by Myself”. A splendid uniform was provided along with the title.

In 1901, when the Nobel Prizes were awarded for the first time, Behring received the Prize in Physiology or Medicine.

diploma
A detail (right) and the diploma for the first Nobel Prize in Physiology or Medicine, awarded to Behring in 1901.
Photo: Courtesy of Aventis Behring

Behring Jubilee in 1940

On December 4, 1940, the Philipps University Marburg celebrated the 50th anniversary of the original publication of Emil von Behring’s decisive discovery of serum therapy. Top leaders of the National Socialist Party, the rectors of numerous German universities, representatives of the Behringwerke and many scientists and friends of Emil von Behring from abroad were also present. The celebration, which continued over a few days, began with lectures and addresses by officials, both of the state and party. Finally, a foundation certificate for a new Institute for Experimental Therapy was handed over. The professors then moved from the university auditorium (Aula), to unveal a new Behring Memorial close to the St. Elisabeth Church. The celebration was followed by a two-day scientific meeting, presenting the state of the art of immunology and the fight against infectious diseases.

The Background of the Celebration

In the view of the National Socialists, Else von Behring was regarded as a “half-Jew”, as her mother came from a Jewish family. With the help of a number of friends she was able to get her sons accepted by Hitler as “Aryans” and not stigmatized as “half-breeds”. After the death of Else von Behring in 1936, no obstacles were left for the Nazi party to use Emil von Behring as a glorified representative of national socialist “Germanic” science. During the ceremony there were, however, some signs of tension. Although one of Behring’s sons participated in the ceremony, he was not greeted by any of the official speakers. Only the Danish researcher, Thorvald Madsen from Copenhagen, who had previously been chairman of the Health Organisation of the League of Nations, dared to mention Behring’s friendly connection with researchers from enemy countries, such as those at the Institut Pasteur in Paris. Courageously, he also recalled the great bacteriologist Paul Ehrlich, despised by the Nazis due to his Jewish origin, who had played a significant role in Behring’s successes.

Quantum gas goes below absolute zero .


It may sound less likely than hell freezing over, but physicists have created an atomic gas with a sub-absolute-zero temperature for the first time1. Their technique opens the door to generating negative-Kelvin materials and new quantum devices, and it could even help to solve a cosmological mystery.

Lord Kelvin defined the absolute temperature scale in the mid-1800s in such a way that nothing could be colder than absolute zero. Physicists later realized that the absolute temperature of a gas is related to the average energy of its particles. Absolute zero corresponds to the theoretical state in which particles have no energy at all, and higher temperatures correspond to higher average energies.

However, by the 1950s, physicists working with more exotic systems began to realise that this isn’t always true: Technically, you read off the temperature of a system from a graph that plots the probabilities of its particles being found with certain energies. Normally, most particles have average or near-average energies, with only a few particles zipping around at higher energies. In theory, if the situation is reversed, with more particles having higher, rather than lower, energies, the plot would flip over and the sign of the temperature would change from a positive to a negative absolute temperature, explains Ulrich Schneider, a physicist at the Ludwig Maximilian University in Munich, Germany.

Schneider and his colleagues reached such sub-absolute-zero temperatures with an ultracold quantum gas made up of potassium atoms. Using lasers and magnetic fields, they kept the individual atoms in a lattice arrangement. At positive temperatures, the atoms repel, making the configuration stable. The team then quickly adjusted the magnetic fields, causing the atoms to attract rather than repel each other. “This suddenly shifts the atoms from their most stable, lowest-energy state to the highest possible energy state, before they can react,” says Schneider. “It’s like walking through a valley, then instantly finding yourself on the mountain peak.”

At positive temperatures, such a reversal would be unstable and the atoms would collapse inwards. But the team also adjusted the trapping laser field to make it more energetically favourable for the atoms to stick in their positions. This result, described today in Science1, marks the gas’s transition from just above absolute zero to a few billionths of a Kelvin below absolute zero.

Wolfgang Ketterle, a physicist and Nobel laureate at the Massachusetts Institute of Technology in Cambridge, who has previously demonstrated negative absolute temperatures in a magnetic system2, calls the latest work an “experimental tour de force”. Exotic high-energy states that are hard to generate in the laboratory at positive temperatures become stable at negative absolute temperatures — “as though you can stand a pyramid on its head and not worry about it toppling over,” he notes — and so such techniques can allow these states to be studied in detail. “This may be a way to create new forms of matter in the laboratory,” Ketterle adds.

If built, such systems would behave in strange ways, says Achim Rosch, a theoretical physicist at the University of Cologne in Germany, who proposed the technique used by Schneider and his team3. For instance, Rosch and his colleagues have calculated that whereas clouds of atoms would normally be pulled downwards by gravity, if part of the cloud is at a negative absolute temperature, some atoms will move upwards, apparently defying gravity4.

Another peculiarity of the sub-absolute-zero gas is that it mimics ‘dark energy’, the mysterious force that pushes the Universe to expand at an ever-faster rate against the inward pull of gravity. Schneider notes that the attractive atoms in the gas produced by the team also want to collapse inwards, but do not because the negative absolute temperature stabilises them. “It’s interesting that this weird feature pops up in the Universe and also in the lab,” he says. “This may be something that cosmologists should look at more closely.”

Energy drinks ‘change heartbeat’


Caffeine energy drinks ‘intensify heart contractions’

Energy drinks

Energy drinks packed with caffeine can change the way the heart beats, researchers warn.

The team from the University of Bonn in Germany imaged the hearts of 17 people an hour after they had an energy drink.

The study showed contractions were more forceful after the drink.

The team told the annual meeting of the Radiological Society of North America that children and people with some health conditions should avoid the drinks.

Researcher Dr Jonas Dorner said: “Until now, we haven’t known exactly what effect these energy drinks have on the function of the heart.

“The amount of caffeine is up to three times higher than in other caffeinated beverages like coffee or cola.

“There are many side effects known to be associated with a high intake of caffeine, including rapid heart rate, palpitations, rise in blood pressure and, in the most severe cases, seizures or sudden death.”

The researchers gave the participants a drink containing 32mg per 100ml of caffeine and 400mg per 100ml of another chemical, taurine.

Short-term impact

They showed the chamber of the heart that pumps blood around the body, the left ventricle, was contracting harder an hour after the energy drink was taken than at the start of the study.

Dr Dorner added: “We’ve shown that energy drink consumption has a short-term impact on cardiac contractility.

“We don’t know exactly how or if this greater contractility of the heart impacts daily activities or athletic performance.”

The impact on people with heart disease is also unknown.

However, the research team advises that children and people with an irregular heartbeat should avoid the drinks.

The British Soft Drinks Association already says the drinks are not for children.

Single photon detected but not destroyed.


First instrument built that can witness the passage of a light particle without absorbing it.

Physicists have seen a single particle of light and then let it go on its way. The feat was possible thanks to a new technique that, for the first time, detects optical photons without destroying them. The technology could eventually offer perfect detection of photons, providing a boost to quantum communication and even biological imaging.

Plenty of commercially available instruments can identify individual light particles, but these instruments absorb the photons and use the energy to produce an audible click or some other signal of detection.

Quantum physicist Stephan Ritter and his colleagues at the Max Planck Institute of Quantum Optics in Garching, Germany, wanted to follow up on a 2004 proposal of a nondestructive method for detecting photons. Instead of capturing photons, this instrument would sense their presence, taking advantage of the eccentric realm of quantum mechanics in which particles can exist in multiple states and roam in multiple places simultaneously.

Ritter and his team started with a pair of highly reflective mirrors separated by a half-millimeter-wide cavity. Then they placed a single atom of rubidium in the cavity to function as a security guard. They chose rubidium because it can take on two distinct identities, which are determined by the arrangement of its electrons. In one state, it’s a 100 percent effective sentry, preventing photons from entering the cavity. In the other, it’s a totally useless lookout, allowing photons to enter the cavity. When photons get in, they bounce back and forth about 20,000 times before exiting.

The trick was manipulating the rubidium so that it was in a so-called quantum superposition of these two states, allowing one atom to be an overachiever and a slacker at the same time. Consequently, each incoming photon took multiple paths simultaneously, both slipping into the cavity undetected and being stopped at the door and reflected away. Each time the attentive state of the rubidium turned away a photon, a measurable property of the atom called its phase changed. If the phases of the two states of the rubidium atom differed, the researchers knew that the atom had encountered a photon.

To confirm their results, the researchers placed a conventional detector outside the apparatus to capture photons after their rubidium rendezvous, the team reports November 14 in Science.

“It’s a very cool experiment,” says Alan Migdall, who leads the quantum optics group at the National Institute of Standards and Technology in Gaithersburg, Md. But he warns that identifying photons without destroying them does not mean that the outgoing photon is the same as it was prior to detection. “You’ve pulled some information out of it, so you do wind up affecting it,” he says. Ritter says he expects the photons’ properties are largely unchanged, but he acknowledges that his team needs to perform more measurements to confirm that hypothesis.

Ritter notes that no photon detector is perfect, and his team’s is no exception: It failed to detect a quarter of incoming photons, and it absorbed a third of them. But he says the power of the technique is that, for many applications of single-photon detectors, each detector wouldn’t have to be perfect. Ritter envisions a nested arrangement of improved detectors that, as long as they did not absorb photons, would almost guarantee that every photon is counted. Ultimately, that could benefit fields such as medicine and molecular biology, in which scientists require precise imaging of objects in low-light environments.

Improved detection of PTH imbalance may benefit dialysis patients.


New data demonstrate an association between lower levels of non-oxidized biologically active parathyroid hormone and increased mortality in hemodialysis patients, suggesting the need for improved assays.

“The current tests for parathyroid hormone levels overlook a key factor. When parathyroid hormone interacts with oxygen under conditions of stress such as end-stage kidney disease, it becomes biologically inactive,” researcherBerthold Hocher, MD, PhD, of the University of Potsdam in Germany, said in a press release.

Researchers conducted a prospective cohort study of 340 hemodialysis patients (224 men, 116 women; median age, 66 years) with end-stage CKD. They measured parathyroid hormone (PTH) levels using a third-generation intact parathyroid hormone electrochemiluminescence immunoassay system (ECLIA; Roche iPTH, Roche Diagnostics) directly and after prior removal of oxidized biologically inactive PTH using an antihuman oxidized parathyroid monoclonal antibody (Immundiagnostik AG).

During 5-year follow-up, 50% of the patients died. Cardiovascular diseaseaccounted for 60% of the deaths, according to the researchers, followed by infections (23%), cancer (11%) and unknown causes (6%).

Results revealed higher median non-oxidized biologically active PTH levels in those who survived (7.2 ng/L) vs. those who did not (5 ng/L; P=.002).

Survival was increased among patients in the highest tertile of non-oxidized biologically active PTH compared with the lowest (P=.0008). Additionally, in the highest tertile, median survival was 1,702 days compared with 453 days in the lowest tertile.

Data also showed that, after multivariable adjustment, older age appeared to increase risk for death, but higher levels of non-oxidized biologically active PTH decreased risk for death.

In an analysis of a subgroup of patients with intact PTH levels above the upper normal range of 70 ng/L at baseline, mortality appeared to be associated with oxidized biologically inactive PTH levels but not non-oxidized biologically active PTH levels.

“With more precise parathyroid hormone testing, health care professionals will have the information they need to improve clinical outcomes,” Hocher said. “The nephrology community has long recognized there is an issue with current testing approaches, and now we can solve this problem and improve patient care.”

Kuwait Reports First MERS Coronavirus Cases.


Kuwait reported its first two cases of the deadly MERS coronavirus on Wednesday, the fifth Gulf Arab country where the strain has emerged since the outbreak began in neighbouring Saudi Arabia last year.

kuwait mers

A 47-year-old man is in a critical condition, Kuwaiti state news agency KUNA said, citing a statement from the Health Ministry. It gave no further details.

A second patient, a 52-year-old Kuwaiti citizen, recently travelled overseas, KUNA said in another report later on Wednesday, adding he had no contact with the first patient.

The Middle East Respiratory Syndrome Coronavirus, or MERS-CoV, can cause coughing, fever and pneumonia. It has been reported in people in the Gulf, France, Germany, Italy, Tunisia and Britain. Oman reported its first case last month and the patient died on Sunday.

Saudi Arabia, where the vast majority of confirmed cases have been recorded, has confirmed 127 cases of the disease, of which 53 have died, since it was discovered in the kingdom more than a year ago.

Cases have also been reported in Qatar and the United Arab Emirates.

The World Health Organization said in August the number of confirmed infections worldwide in the year from September 2012 had been 102. Almost half of those infected had died.

Scientists say they believe dromedary camels in the Middle East may be the animal “reservoir” that is fuelling the outbreak.

The Discovery of Insulin.


Before the discovery of insulin, diabetes was a feared disease that most certainly led to death. Doctors knew that sugar worsened the condition of diabetic patients and that the most effective treatment was to put the patients on very strict diets where sugar intake was kept to a minimum. At best, this treatment could buy patients a few extra years, but it never saved them. In some cases, the harsh diets even caused patients to die of starvation.

pancreasDuring the nineteenth century, observations of patients who died of diabetes often showed that the pancreas was damaged. In 1869, a German medical student, Paul Langerhans, found that within the pancreatic tissue that produces digestive juices there were clusters of cells whose function was unknown. Some of these cells were eventually shown to be the insulin-producing beta cells. Later, in honor of the person who discovered them, the cell clusters were named the islets of Langerhans.

In 1889 in Germany, physiologist Oskar Minkowski and physician Joseph von Mering, showed that if the pancreas was removed from a dog, the animal got diabetes. But if the duct through which the pancreatic juices flow to the intestine was ligated – surgically tied off so the juices couldn’t reach the intestine – the dog developed minor digestive problems but no diabetes. So it seemed that the pancreas must have at least two functions:

  • To produce digestive juices
  • To produce a substance that regulates the sugar glucose

This hypothetical internal secretion was the key. If a substance could actually be isolated, the mystery of diabetes would be solved. Progress, however, was slow.

Banting’s Idea

In October 1920 in Toronto, Canada, Dr. Frederick Banting, an unknown surgeon with a bachelor’s degree in medicine, had the idea that the pancreatic digestive juices could be harmful to the secretion of the pancreas produced by the islets of Langerhans.

He therefore wanted to ligate the pancreatic ducts in order to stop the flow of nourishment to the pancreas. This would cause the pancreas to degenerate, making it shrink and lose its ability to secrete the digestive juices. The cells thought to produce an antidiabetic secretion could then be extracted from the pancreas without being harmed.

Early in 1921, Banting took his idea to Professor John Macleod at the University of Toronto, who was a leading figure in the study of diabetes in Canada. Macleod didn’t think much of Banting’s theories. Despite this, Banting managed to convince him that his idea was worth trying. Macleod gave Banting a laboratory with a minimum of equipment and ten dogs. Banting also got an assistant, a medical student by the name of Charles Best. The experiment was set to start in the summer of 1921.

Banting and Best with a diabetic dog
Banting, right, and Best, left, with one of the diabetic dogs used in experiments with insulin.
Credits: University of Toronto Archives

The Experiment Begins

Banting and Best began their experiments by removing the pancreas from a dog. This resulted in the following:

  • It’s blood sugar rose.
  • It became thirsty, drank lots of water, and urinated more often.
  • It became weaker and weaker.

The dog had developed diabetes.

Experimenting on another dog, Banting and Best surgically ligated the pancreas, stopping the flow of nourishment, so that the pancreas degenerated.

After a while, they removed the pancreas, sliced it up, and froze the pieces in a mixture of water and salts. When the pieces were half frozen, they were ground up and filtered. The isolated substance was named “isletin.”

The extract was injected into the diabetic dog. Its blood glucose level dropped, and it seemed healthier and stronger. By giving the diabetic dog a few injections a day, Banting and Best could keep it healthy and free of symptoms.

Banting and Best showed their result to Macleod, who was impressed, but he wanted more tests to prove that their pancreatic extract really worked.

Banting and Best's laboratory Banting’s and Best’s laboratory, where insulin was discovered. 
Credits: University of Toronto Archives

Extended Tests

For the increased testing, Banting and Best realized that they required a larger supply of organs than their dogs could provide, and they started using pancreases from cattle. With this new source, they managed to produce enough extract to keep several diabetic dogs alive.

A dog and a cowThe new results convinced Macleod that they were onto something big. He gave them more funds and moved them to a better laboratory with proper working conditions. He also suggested they should call their extract “insulin.” Now, the work proceeded rapidly.

In late 1921, a third person, biochemist Bertram Collip, joined the team. Collip was given the task of trying to purify the insulin so that it would be clean enough for testing on humans.

During the intensified testing, the team also realized that the process of shrinking the pancreases had been unnecessary. Using whole fresh pancreases from adult animals worked just as well.

Testing on Humans

The team was eager to start testing on humans. But on whom should they test? Banting and Best began by injecting themselves with the extract. They felt weak and dizzy, but they were not harmed.

Collip continued his work to purify the insulin. He also experimented with trying to find the correct dosage. He learned how to diminish the effect of an insulin overdose with glucose in different forms. He discovered that the glucose should be as pure as possible. Orange juice and honey are good examples of foods rich in glucose.

A human and honeyIn January 1922 in Toronto, Canada, a 14-year-old boy, Leonard Thompson, was chosen as the first person with diabetes to receive insulin. The test was a success. Leonard, who before the insulin shots was near death, rapidly regained his strength and appetite. The team now expanded their testing to other volunteer diabetics, who reacted just as positively as Leonard to the insulin extract.

The Nobel Prize

The news of the successful treatment of diabetes with insulin rapidly spread outside of Toronto, and in 1923 the Nobel Committee decided to award Banting and Macleod the Nobel Prize in Physiology or Medicine.

The decision of the Nobel Committee made Banting furious. He felt that the prize should have been shared between him and Best, and not between him and Macleod. To give credit to Best, Banting decided to share his cash award with him. Macleod, in turn, shared his cash award with Collip.

The Nobel Prize in Physiology or Medicine for insulin has been much debated. It has been questioned why Macleod received the prize instead of Best and Collip. However, Macleod played a central role in the discovery of insulin. It was he who supported the project from the beginning. He supervised the work and it is also most likely that Macleod’s contacts in the scientific world helped the team in getting a speedy recognition of their discovery.


Frederick G. Banting and John Macleod were awarded the Nobel Prize in Physiology or Medicine in 1923 “for the discovery of insulin.”

The Legacy of Insulin

Banting, Macleod, and the rest of the team patented their insulin extract but gave away all their rights to the University of Toronto, which would later use the income from insulin to fund new research.

Very soon after the discovery of insulin, the medical firm Eli Lilly started large-scale production of the extract. As soon as 1923, the firm was producing enough insulin to supply the entire North American continent.

Although insulin doesn’t cure diabetes, it’s one of the biggest discoveries in medicine. When it came, it was like a miracle. People with severe diabetes and only days left to live were saved. And as long as they kept getting their insulin, they could live an almost normal life.