Space technology company builds a functioning artificial heart.


Space technology company builds a functioning artificial heart

Space technology company builds a functioning artificial heart

An artificial heart that took 15 years to develop has been approved for human trials. The device, which was fashioned from biological tissue and parts of miniature satellite equipment, combines the latest advances in medicine, biology, electronics, and materials science.

It’s built by the Paris-based company Carmat and it’s the brainchild of French cardiac surgeon Alain Carpentier. The state-of-the-art device is the result of a collaboration with aerospace giant Astrium, the space subsidiary of EADS, along with support from the French government.

In order for it to qualify for human trials, the developers had to create a heart that could withstand the demanding conditions of the body’s circulatory system. It has to pump 35 million times per year for at least five years — and without fail. This is why Carpentier’s team turned to space technology, which is known for its resilience and compact size.

“Space and the inside of your body have a lot in common,” said Astrium’s Matthieu Dollon in an ESA statement. “They both present harsh and inaccessible environments.”

Indeed, Telecom satellites have similar demands placed upon them; they have to last for at least 15 years and function 36,000 km above Earth.

“Failure in space is not an option,” he added. “Nor is onsite maintenance. If a part breaks down, we cannot simply go and fix it. It’s the same inside the body.”

Space technology company builds a functioning artificial heart

In addition to space-tech, the artificial heart combines synthetic and biological materials as well as sensors and software to detect a patient’s level of exertion and adjust output accordingly. MIT‘s Technology Review explains more:

In Carmat’s design, two chambers are each divided by a membrane that holds hydraulic fluid on one side. A motorized pump moves hydraulic fluid in and out of the chambers, and that fluid causes the membrane to move; blood flows through the other side of each membrane. The blood-facing side of the membrane is made of tissue obtained from a sac that surrounds a cow’s heart, to make the device more biocompatible. “The idea was to develop an artificial heart in which the moving parts that are in contact with blood are made of tissue that is [better suited] for the biological environment,” says Piet Jansen, chief medical officer of Carmat.

That could make patients less reliant on anti-coagulation medications. The Carmat device also uses valves made from cow heart tissue and has sensors to detect increased pressure within the device. That information is sent to an internal control system that can adjust the flow rate in response to increased demand, such as when a patient is exercising.

 

Helicopters or Airplanes.


In the wake of the unsuccessful Iran hostage-rescue attempt in 1980, when three of eight helicopters failed and crippled the mission, military planners came to a realization: The U.S. fleet was in desperate need of an aircraft that could combine the speed and range of a jet with the vertical lift of a helicopter. In response, they designed the tilt-rotor V-22 Osprey. The V-22 can carry two dozen troops 1,000 nautical miles at speeds around 250 miles an hour. It is one of the most versatile craft in the U.S. Vertical Takeoff and Landing (VTOL) fleet, which includes helicopters and jump jets. It is also the youngest: The V-22 represents the last major addition to the VTOL arsenal in more than 20 years.

As modern warfare evolves to include more lightning-fast, covert strikes similar to the raid on Osama Bin Laden’s compound, VTOL is once again a priority for U.S. military planners. Two programs launched this year could improve the speed, range, and hover efficiency of VTOL aircraft: In March, the Army launched a program that officially began accepting designs for technology that could be used in next-generation rotorcraft. Sikorsky and Boeing filed a joint proposal based on Sikorsky’s X2 rotor and propeller system; Bell Helicopter, the co-developer of the V-22, submitted an updated tilt-rotor; and European aerospace giant EADS put forth a design likely based on Eurocopter’s experimental X3. And in February, DARPA announced a $130 million VTOL X-Plane program that asks aerospace engineers to propose entirely new approaches to VTOL—a fixed wing, a rotary wing, or maybe something in between.

With top speeds of more than 250 mph, improved VTOL aircraft could increase military reach, shorten travel time for combat troops, and deliver personnel and cargo virtually anywhere, regardless of terrain. While the precise designs will remain secret for a while—both the Army and DARPA programs plan to fly demonstrations by 2017—they will likely draw from three existing technologies, as illustrated on the next page. After 24 years without significant innovation, VTOL is flying high once more.