Men can’t multitask, women have better memory, study led by Indian-origin scientist reveals.


Men can’t multitask and women have better memory because their brains are wired differently, a new study led by an Indian-origin scientist has found.

The research found striking differences in the neural wiring of men and women, which explains why males excel at certain tasks and females at others.

In one of the largest studies looking at the “connectomes” of the sexes, Ragini Verma, an associate professor in the department of radiology at the Perelman School of Medicine at the University of Pennsylvania, and colleagues found greater neural connectivity from front to back and within one hemisphere in males.

This suggests male brains are structured to facilitate connectivity between perception and coordinated action.

In contrast, in females, the wiring goes between the left and right hemispheres, suggesting that they facilitate communication between the analytical and intuition.

“These maps show us a stark difference – and complementarity – in the architecture of the human brain that helps provide a potential neural basis as to why men excel at certain tasks, and women at others,” said Verma, who has a PhD in computer vision and mathematics from Indian Institute of Technology Delhi.

In the study, Verma and colleagues investigated the gender-specific differences in brain connectivity during the course of development in 949 individuals (521 females and 428 males) aged 8 to 22 years using diffusion tensor imaging.

DTI is water-based imaging technique that can trace and highlight the fiber pathways connecting the different regions of the brain, laying the foundation for a structural connectome or network of the whole brain.

Researchers found that females displayed greater connectivity in the supratentorial region, which contains the cerebrum, the largest part of the brain, between the left and right hemispheres.

Males, on the other hand, displayed greater connectivity within each hemisphere.

By contrast, the opposite prevailed in the cerebellum, the part of the brain that plays a major role in motor control, where males displayed greater inter-hemispheric connectivity and females displayed greater intra-hemispheric connectivity.

These connections likely give men an efficient system for coordinated action, where the cerebellum and cortex participate in bridging between perceptual experiences in the back of the brain, and action, in the front of the brain, researchers said in the journal Proceedings of National Academy of Sciences.

The female connections likely facilitate integration of the analytic and sequential processing modes of the left hemisphere with the spatial, intuitive information processing modes of the right side.

The authors observed only a few gender differences in the connectivity in children younger than 13 years, but the differences were more pronounced in adolescents aged 14 to 17 years and young adults older than 17.

First physical evidence of why you’re a morning or night person.


They say the early bird catches the worm, but night owls may be missing far more than just a tasty snack. Researchers have discovered the first physical evidence of structural brain differences that distinguish early risers from people who like to stay up late. The differences might help to explain why night owls seem to be at greater risk of depression.

Around 10 per cent of people qualify as morning people or larks, and a further 20 per cent are night owls – with the rest of us falling somewhere in between. Your lark or night owl status is called your chronotype.

Previous studies have suggested that night owls experience worse sleep, more tiredness during the day and consume greater amounts of tobacco and alcohol. This has prompted some to suggest that they are suffering from a form of chronic jet lag.

To investigate further, Jessica Rosenberg at RWTH Aachen University in Germany and colleagues used diffusion tensor imaging to scan the brains of 16 larks, 23 night owls and 20 intermediate chronotypes. They found a reduction in the integrity of night owls’ white matter – brain tissue largely comprised of fatty insulating material that speeds up the transmission of nerve signals – in areas associated with depression.

“We think this could be caused by the fact that late chronotypes suffer from this permanent jet lag,” says Rosenberg, although she cautions that further studies are needed to confirm cause and effect.

Skewed body clocks

Although the team controlled for tobacco and alcohol use, it’s possible that gene variants that skew people’s body clocks towards nocturnal living could affect the structure of the brain. It’s also not clear whether the structural changes have any implications for people’s health.

“It’s interesting that there are individual differences, but we need to understand what is causing them and find ways of creating environments in which those differences can be attenuated,” says Derk-Jan Dijk, director of the Surrey Sleep Research Centre in Guildford, UK, who was not involved in the study.

Rosenberg suggests that people’s work schedules should change to fit in with their natural sleep patterns, but Djik says there may be an easier way. For example, research published last month suggests that night owls who cut their exposure to artificial light and boosted their exposure to sunlight found their body clocks shifted towards earlier waking and sleeping

Source: newscientist.com