Quantum Equation Suggests The Big Bang Never Occurred – The Universe Has No Beginning

When it comes to the science regarding the true nature of our reality, you won’t find a shortage of theories, or a shortage of criticisms of each theory. We are like a race with amnesia, trying to discover and search for an answer that most probably exists, but has yet to be discovered. How did the universe begin?


According to new research, there might not have been a big bang. Instead, the universe might have existed forever. The theory was derived from the mathematics of general relativity, and compliment Einstein’s theory of general relativity.

“The Big Bang singularity is the most serious problem of general relativity because the laws of physics appear to break down there.”  – Ahmed Farag Ali, Benha University, Co-Author of the study. (source)

The big bang theory postulates that everything in existence resulted from a single event that launched the creation of the entire universe and that everything in existence today was once part of a single infinitely dense point, also known as the “singularity.”

Here is a good picture representing what the big bang theory is referring to.


So the big bang, again, postulates that the universe started out as an infinitely small point in space called a singularity, then exploded and created space where there was no space before, and that it is continually expanding. One big question regarding that expansion is; how did it happen? As you can see in the picture, “who is that guy?

According to Nassim Haramein, the Director of Research for the Resonance Project

“For every action there is an equal opposite reaction.” is one of the most foundational and proven concepts in all of physics. Therefore, if the universe is expanding then “the guy” (or whatever “he” is), who is blowing up that balloon, has to have some huge lungs that are contracting to be able to blow it up. This a concept that Nassim Haramein began exploring when creating an alternative unified field theory to explain the universe.” (source)

This is one out of many criticisms regarding the big bang theory. There are many considerations to be pondered. Can something come from nothing? What about quantum mechanics and the possibility that there is no moment of time at which the universe did not exist?

Again, so many considerations to be pondered.

According to Phys.org:

“The scientists propose that this fluid might be composed of gravitons—hypothetical massless particles that mediate the force of gravity. If they exist, gravitons are thought to play a key role in a theory of quantum gravity.In a related paper, Das and another collaborator, Rajat Bhaduri of McMaster University, Canada, have lent further credence to this model. They show that gravitons can form a Bose-Einstein condensate (named after Einstein and another Indian physicist, Satyendranath Bose) at temperatures that were present in the universe at all epochs.” (source)

The theory also suggests (obviously) that there are no singularities or dark matter, and that the universe is filled with a “quantum fluid.” These scientists are suggesting that this quantum fluid is filled with gravitons.

According to Phys.org:

“In a related paper, Das and another collaborator, Rajat Bhaduri of McMaster University, Canada, have lent further credence to this model. They show that gravitons can form a Bose-Einstein condensate (named after Einstein and another Indian physicist, Satyendranath Bose) at temperatures that were present in the universe at all epochs.”

As you can see, when quantum mechanics is thrown into the equation things appear to be far different. Again, this new theory is suggesting that the universe could have always existed, that it never was what we perceive to be as “the  beginning.” Perhaps it was just an event that did occur that we perceive as the beginning, perhaps the event occurred not from nothing, but something. Again, who is that guy blowing on the balloon in the picture? There is something there that has yet to be discovered.

“As far as we can see, since different points in the universe never actually converged in the past, it did not have a beginning. It lasted forever. It will also not have an end, in other words, there is no singularity. The universe could have lasted forever. It could have gone through cycles of being small and big. or it could have been created much earlier.” –  Saurya Das at the University of Lethbridge in Alberta, Canada, Co-Author of the study. (source)

What We Know Is Often Just Theory

To conclude, it’s clear that we do not yet have a solid explanation regarding what happened during the Big Bang, or if it even happened at all. This new theory is combining general relativity with quantum mechanics, and at the end of the day these are all just theories.

Not to mention the fact that theories regarding multiple dimensions, multiple universes and more have to be considered. When looking for the starting point of creation, our own universe might not even be the place to start. It might be hard given the fact that we cannot yet perceive other factors that have played a part in the make up of what we call reality. What is even harder is the fact that quantum physics is showing that the true nature and make up of the universe is not a physical material thing!

We just don’t know yet, and there are still new findings in modern day physics that delve into non-materialistic science that many mainstream materialistic scientists have yet to grasp and acknowledge.

I’ll leave you with a quote that might give you something to think about:

“A fundamental conclusion of the new physics also acknowledges that the observer creates the reality. As observers, we are personally involved with the creation of our own reality. Physicists are being forced to admit that the universe is a “mental” construction. Pioneering physicist Sir James Jeans wrote: “The stream of knowledge is heading toward a non-mechanical reality; the universe begins to look more like a great thought than like a great machine. Mind no longer appears to be an accidental intruder into the realm of matter, we ought rather hail it as the creator and governor of the realm of matter.” (R. C. Henry, “The Mental Universe”; Nature 436:29, 2005)

“Despite the unrivaled empirical success of quantum theory, the very suggestion that it may be literally true as a description of nature is still greeted with cynicism, incomprehension and even anger. (T. Folger, “Quantum Shmantum”; Discover 22:37-43, 2001)


A Deeper Look into Quantum Mechanics

Superconducting qubits are tops UCSB

Winfried Hensinger is the director of the Sussex Centre for Quantum Technologies in England, and he has spent a lifetime devoted to studying the ins and outs of quantum mechanics and just what it can do for us. When Hensinger first started in the field, quantum computing was still very much a theory, but now it is all around us, and various projects are within reach of creating a universal quantum computer. So, now that scientists are taking quantum computing more seriously it won’t be long before the field begins to explode and applications that we never even imagined possible will become available to use.

Quantum computing works with information that is stored in qubits which have a value of either 1, 0, or any quantum superposition of the two states.  The notion behind quantum superposition is that a quantum object has the ability to occupy more than one state until it’s measured.  Because quantum objects are used in this kind of computing, any given set of quantum values can represent much more data than binary ever could because data is not limited to 1’s and 0’s.

Currently, researchers are still battling it out to create a successful quantum computer, but they still have a way to go.  Systems have been constructed that has access to a few qubits and are good for testing hardware configurations or running some algorithms, but are very expensive and still very basic.  When Hensinger was asked about the current changes within quantum computing, he simply replied, “It used to be a physics problem.  Now, it’s and engineering problem.” 

Two possibilities from researchers of what the foundation of quantum computing should look like are superconducting qubits and trapped ions. Superconducting qubits relies on supercooled electrical circuits and could bring many advantages to the manufacturing process when making them on a mass scale.  The trapped ions method refers to a method that can cope with environmental factors but has trouble controlling lots of charged atoms within a vacuum.  Hensinger supports both of these implementations and believes they will both produce a quantum computer.  During his research, Hensinger’s results showed that the trapped ions method was slightly ahead of the competition.

However, Hensinger has also created his own method with the help of his team at Sussex and focuses on individually controlled voltages that are needed within the quantum circuit. He says, “With this concept, it becomes much easier to build a quantum computer.  This is one of the reasons why I’m very optimistic about trapped ions.”  Hensinger and co also chose to work with trapped ions as it works at room temperature, unlike the superconducting qubits method.

IBM, on the other hand, has chosen to work with superconducting qubits as the basis for their quantum work.  Their quantum computer consists of a five-qubit processor that’s contained within a printed circuit board.  The refrigerated system contains control wires that transmit microwave signals to the chip and send signals out through various amplifiers and passive microwave components where they are interpreted by a classical computer for easy reading of the system’s qubit state from outside the refrigerated system.  All of this takes up more than 100 square feet within IBM’s lab, and that is because of the significant cooling that needs to be done.


Jerry Chow, the manager of the Experimental Quantum Computing team at IBM, says that the reason IBM uses superconducting qubits is more to do with previous research using this technique that had been done.  And, as Chow explains, “I think superconducting qubits are really attractive because they’re micro-fabricate.  You can make them on a computer chip, on a silicon wafer, pattern them with the standard lithography techniques using transistor processes, and in that sense have a pretty straightforward route toward scaling.”

Two beryllium ions trapped 40 micrometers apart from the square gold chip in the center form the heart of this ‘trapped ion’ quantum computer. (Photo: Y. Colombe/NIST)
Two beryllium ions trapped 40 micrometers apart from the square gold chip in the center form the heart of this ‘trapped ion’ quantum computer. 
NASA’s 512-qubit Vesuvius processor is cooled to 20 millikelvin, more than 100 times colder than interstellar space. (Photo: NASA Ames/John Hardman)
NASA’s 512-qubit Vesuvius processor is cooled to 20 millikelvin, more than 100 times colder than interstellar space. 

So, one thing that we know for certain is that when it comes to quantum computing both superconducting qubits and trapped ions have emerged as the two techniques to take note of. Quantum computing will develop further over the next few years, and it’s in everyone’s best interests if large-scale quantum computers aren’t tied down to just one possible solution.  Hensinger for one is definitely in support of both ideas and notes, “It’s healthy to have different groups trying different things.”  At the moment, it’s still hard to say exactly what quantum computing will be used for in the future, but algorithms are constantly being worked on to see what hardware could be capable of using quantum computing.

A quantum algorithm is a recipe that is usually written in a mathematical format and is a solution for solving a particular problem.  But, because quantum computing does not work in the same was as classical computing, algorithms that are made from binary are useless, so new ones need to be made and that is something that Krysta Svore and team at Microsoft’s Quantum Architectures and Computation Group focuses on.  She states, “We have a programming language that we have developed explicitly for quantum computing.  Our language and our tools are called LIQUI|>.  LIQUI\> allows us to express these quantum algorithms, then it goes through a set of optimizations, compilations, and basically rewrites the language instructions into device-specific instructions.”

Svore and team at the Quantum Architecture and Computation Group have access to a simulated quantum computer that is currently running on a classical system.  This allows them to debug existing quantum algorithms, as well as design and test new ones and helps the hardware team to see how quantum computers could be used in practice.  However, IBM has taken things one step further.  As well as having a successful simulation that they can work on they have also launched the IBM Experience which is an online interface that allows students and enthusiasts to have a go themselves with a five-qubit system and run their own algorithms and experiments from the cloud-based platform. 

IBM’s five qubit processor uses a lattice architecture that scale to create larger, more powerful quantum computers. (Photo: IBM)
IBM’s five qubit processor uses a lattice architecture that scale to create larger, more powerful quantum computers.
One of the most famous applications in the world of quantum computing comes in the form of Shor’s algorithm.  Ryan O’Donnell of the Carnegie Mellon School of Computer Science in Pittsburgh said, “In 1997, Shor showed an algorithm for a quantum computer that would be able to factor such numbers very efficiently”, when referring to numbers with thousands of digits.  Ever since then it has become a kind of measuring stick for the advancement of the whole field.  One of the current applications involving quantum hardware is to research different areas of science further.

Although quantum computing is going to become more common over the next few years, it’s not suddenly going to become the next mainstream technology that is found in every office and home.  But, the technology in one form or another may do.  In the next ten years, quantum computing will develop although its exact development may not be immediately obvious to the general public as at the moment, the promise of quantum computing is much more advanced then where researchers are with it.  But, eventually, it will revolutionize computing.


Watch the video. URL:https://youtu.be/z1GCnycbMeA

The World’s First Quantum Enigma Machine Unveiled

The World's First Quantum Enigma Machine Unveiled

Over 70 years ago a very intelligent mathematician and engineer named Claude Shannon, known as “the father of information theory,” started to pave the way for computing and communications by building some of the world’s first computers.  He was also a major contributor to the field of cryptology and in 1949, in his published paper called ‘Communication Theory of Secrecy Systems‘ that proved it was quite possible to send a secure message using an encryption key that is entirely random and used only once.

Now, with the help of Shannon’s research and contributions, quantum physicists have been able to demonstrate that the process will work much better when using quantum rules.  The scientists state that a message can be sent with an encryption key of a different size to that of its message in the quantum world.So, it has been very exciting times for Daniel Lum and his team at Rochester, New York as they reveal their world’s first fully working quantum enigma machine.

The World's First Quantum Enigma Machine Unveiled

The previous Enigma machine used a single use pad and worked by attaching a random number to each digit of the message that can only be read by reversing the process.  Both the sender and receiver must be the only people with the list of random numbers, and this is longer than the actual message.

With the quantum enigma machine, quantum keys are used to encrypt the message to ensure maximum security of the data.  This method works by encoding information in a quantum object and altering the state of it with a random operation.  By doing this it ensures the data can only be retrieved again by reversing that same random operation, but unlike the original enigma machine, the quantum key can be much shorter than the actual message.

With technology advancing at the rapid rate that it is, it’s no surprise that we have developed these enhanced encryption machines.  And, with extended research and development who knows how much further we can go with these machines and they could well be available for commercial use in the very near future.

This New Device Enables Quantum Computers to Calculate Much More Complex Questions that Today’s Computers Can’t Handle

Princeton University scientist have built a device for Quantum computers in which a single electron can pass its quantum information to a particle of light. This will allow silicon-based quantum computers to be built and let them solve much more complicated problems.

The future of computers lies in quantum computing. No longer will we be working with 1’s and 0’s, but qubits that are capable of being both 1 and 0 at the same time. In terms of capability, this means that a quantum computer is able to calculate much more complex problems simultaneously, unlike your standard computer.

But, as great as that all sounds, it’s not easy programming a quantum computer to be able to solve these difficult equations. However, one recent study may have just made the process a little easier. The involved study scientists at Princeton University and basically consisted of the group creating a device that was able to pass a quantum state from particle to particle. One of the researchers involved in the study and graduate student in Princeton’s Department of Physics, Xiao Mi, said, “We now have the ability actually to transmit the quantum state to a photon. This has never been done before in a semiconductor device because the quantum state was lost before it could transfer its information.”

The qubit consists of a single electron that is trapped below the surface of a silicon chip (gray). The green, pink and purple wires on top of the silicon structure deliver precise voltages to the qubit. The purple plate reduces electronic interference that can destroy the qubit’s quantum information. By adjusting the voltages in the wires, the researchers can trap a single electron in a double quantum dot and adjust its energy so that it can communicate its quantum information to a nearby photon. 
A fully packaged device for trapping and manipulating single electrons and photons. A series of on-chip electrodes (lower left and upper right) lead to the formation of a double quantum dot that confines a single electron below the surface of the chip. The photon, which is free to move within the full 7-millimeter span of the cavity, exchanges quantum information with the electron inside the double quantum dot.

The whole research project went on for five years with details of the passing of information from an electron to a photon disclosed just recently. The device used to do this was constructed by HRL Laboratories and is owned by General Motors and Boeing. Its simplistic design uses tow commonly used materials: silicon and silicon-germanium. Made from layers of silicon and nanowires placed at the top, these chips are great for transferring quantum information across. Photons were used as the medium for exchanging quantum information between electrons as they’re less sensitive to disruption and also have the ability to travel well through optic cables and circuits that could be used in a quantum supercomputer.

Jason Petta is a professor of physics at Princeton, and he says, “Just like in human interactions, to have good communication a number of things need to work out – it helps to speak the same language and so forth. We can bring the energy of the electronic state into resonance with the light particle so that the two can talk to each other.” So, hopefully, it won’t be too many more years we have to wait to see a quantum computer, but for now, it’s not quite there yet.

Now Quantum Computers Can Send Information Using a Single Particle of Light

Physicists at Princeton University have revealed a device they’ve created that will allow a single electron to transfer its quantum information to a photon. This is a revolutionary breakthrough for the team as it gets them one step closer to producing the ultimate quantum computer. The device is the result of five years worth of research and could accelerate the world of quantum computing no end.

Xiao Mi, a graduate student in Princeton’s Department of Physics, says, “We now have the ability to transmit the quantum state to a photon. This has never been done in a semiconductor device because the quantum state was lost before it could transfer its information.” The way in which the device works is by trapping an electron and photon within a device built by HRL Laboratories and owned by Boeing and General Motors. The semiconducting chip is made up of several layers of silicon and silicon-germanium, and across the top are a number of nanowires that are used to deliver energy to the chip.

Quantum computing brings with it a whole range of advantages; the main one being its capability to calculate many problems simultaneously resulting in much faster computing than anything we’re used to. Jason Petta, professor of physics at Princeton, said, “In our device, the state of the qubit is encoded in the position of the electron. The electron is trapped in a double well potential where the electron can occupy the left well, the right well, or be in a superposition state: both left and right at the same time. The information is therefore stored in the position of a single electron.”

The researchers discovered the best way for them to pass information between electrons without destroying them in the process was to use photons as they’re less sensitive to environmental factors and would be perfect for helping to form the circuits for a quantum computer. Petta goes on to say,” Just like in human interactions, to have good communication a number of things need to work out – it helps to speak the same language and so forth. We are able to bring the energy of the electronic state into resonance with the light particle so that the two can talk to each other.” The researchers will continue to do further work with the device to fine tune it to allow greater control over the transferring of information between qubits.

5 Thought-Provoking Quantum Experiments Showing That Reality Is an Illusion · 

No one in the world can fathom what quantum mechanics is, this is perhaps the most important thing you need to know about it. Granted, many physicists have learned to use its laws and even predict phenomena based on quantum calculations. But it is still unclear why the observer of an experiment determines behavior of the system and causes it to favor one state over another. “Theories and Applications” picked examples of experiments with outcomes which will inevitably be influenced by the observer, and tried to figure out how quantum mechanics is going to deal with the intervention of conscious thought in material reality.

1. Schrödinger’s cat

Today there are many interpretations of quantum mechanics with the Copenhagen interpretation being perhaps the most famous to-date. In the 1920s, its general postulates were formulated by Niels Bohr and Werner Heisenberg. The wave function has become the core term of the Copenhagen interpretation, it is a mathematical function containing information about all possible states of a quantum system in which it exists simultaneously.

As stated by the Copenhagen interpretation, the state of the system and its position relative to other states can only be determined by an observation (the wave function is used only to help mathematically calculate the probability of the system being in one state or another). We can say that after observation, the quantum system becomes classical and immediately cease to exist in other states, except for the state it has been observed.

This approach has always had its opponents (remember for example Albert Einstein’s “God does not play dice“), but the accuracy of the calculations and predictions prevailed. However, the number of supporters of the Copenhagen interpretation is decreasing and the major reason for that is the mysterious instant collapse of the wave function during the experiments. The famous mental experiment by Erwin Schrödinger with the poor cat was meant to demonstrate the absurdity of this phenomenon.

Let us recap the nature of this experiment. A live cat is placed inside a black box, together with a vial containing poison and a mechanism that can release this poison at random. For instance, a radioactive atom during its decay can break the vial. The precise time of atom’s decay is unknown. Only half-life, or the time during which the decay occurs with a probability of 50%, is known.


Obviously, for the external observer, the cat inside the box exists in two states: it is either alive, if all goes well, or dead, if the decay occurred and the vial was broken. Both of these states are described by the cat’s wave function, which changes over time. The more time has passed, the more likely that radioactive decay has already happened. But as soon as we open the box, the wave function collapses, and we immediately see the outcomes of this inhumane experiment.

In fact, until the observer opens the box, the cat will be subjected to the endless balance on the brink of being between life and death, and its fate can only be determined by the action of the observer. That is the absurdity pointed out by Schrödinger .

2. Diffraction of electrons

According to the poll of the greatest physicists conducted by The New York Times, the experiment with electron diffraction is one of the most astonishing studies in the history of science. What was its nature?

There is a source that emits a stream of electrons onto photosensitive screen. And there is obstruction in the way of these electrons, a copper plate with two slits. What kind of picture can be expected on the screen if the electrons are imagined as small charged balls? Two strips illuminated opposite to the slits.

In fact, the screen displays a much more complex pattern of alternating black and white stripes. This is due to the fact that, when passing through the slit, electrons begin to behave not as particles, but as waves (just like the photons, or light particles, which can be waves at the same time). These waves interact in space, either quenching or amplifying each other, and as a result, a complex pattern of alternating light and dark stripes appears on the screen.


At the same time, the result of this experiment does not change, and if electrons pass through the slit not as one single stream, but one by one, even one particle can be a wave. Even a single electron can pass simultaneously through both slits (and this is also one of the main postulates of the Copenhagen interpretation of quantum mechanics, when particles can simultaneously display both their “usual” physical properties and exotic properties as a wave).


But what about the observer? The observer makes this complicated story even more confusing. When physicists, during similar experiments, tried to determine with the help of instruments which slit the electron actually passes through, the image on the screen had changed dramatically and become a “classic” pattern with two illuminated sections opposite to the slits and no alternating bands displayed.

Electrons seemed not wanting to show their wave nature under the watchful eye of observers. Did they manage to follow their instinctive desire to see a clear and simple picture. Is this some kind of a mystery? There is a more simple explanation: no observation of a system can be carried out without physically impacting it. But we will discuss this a bit later.

3. Heated fullerene

Experiments on the diffraction of particles have been conducted not only for electrons, but for much larger objects. For example, using fullerenes, large and closed molecules consisting of dozens of carbon atoms (for example, fullerene of sixty carbon atoms is very similar in shape to a football, a hollow sphere comprised of pentagons and hexagons).

Recently, a group of scientists from the University of Vienna supervised by Professor Zeilinger tried to introduce an element of observation in these experiments. To do this, they irradiated moving fullerene molecules with a laser beam. Then, warmed by an external source, the molecules began to glow and inevitably displayed their presence in space to the observer.

Together with this innovation, the behavior of molecules has also changed. Prior to the beginning of such comprehensive surveillance, fullerenes quite successfully avoided obstacles (exhibited wave-like properties) similar to the previous example with electrons passing through an opaque screen. But later, with the presence of an observer, fullerenes began to behave as completely law-abiding physical particles.

4. Cooling measurement

One of the famous laws in the world of quantum physics is the Heisenberg uncertainty principle which claims that it is impossible to determine the speed and the position of a quantum object at the same time. The more accurate we are at measuring the momentum of a particle, the less precise we are at measuring its position. But the validity of quantum laws operating on tiny particles usually remains unnoticed in our world of large macroscopic objects.

Recent experiments by Professor Schwab in the U.S. are even more valuable in this respect, where quantum effects have been demonstrated not at the level of electrons or fullerene molecules (their characteristic diameter is about 1 nm), but on a little more tangible object, a tiny aluminum strip.

This strip was fixed on both sides so that its middle was in a suspended state and it could vibrate under external influence. In addition, a device capable of accurately recording strip’s position was placed near it.

As a result, the experimenters came up with two interesting findings. First, any measurement related to the position of the object and observations of the strip did affect it, after each measurement the position of the strip changed. Generally speaking , the experimenters determined the coordinates of the strip with high precision and thus , according to the Heisenberg’s principle, changed its velocity, and hence the subsequent position.

Secondly, which was quite unexpected, some measurements also led to cooling of the strip. So, the observer can change physical characteristics of objects just by being present there.

5. Freezing particles

As it is well known, unstable radioactive particles decay not only for experiments with cats, but also on their own. Each particle has an average lifetime which, as it turns out, can increase under the watchful eye of the observer.
This quantum effect was first predicted back in the 1960s, and its brilliant experimental proof appeared in the article published in 2006 by the group led by Nobel laureate in Physics Wolfgang Ketterle of the Massachusetts Institute of Technology.

In this paper, the decay of unstable excited rubidium atoms was studied (photons can decay to rubidium atoms in their basic state). Immediately after preparation of the system, excitation of atoms was observed by exposing it to a laser beam. The observation was conducted in two modes: continuous (the system was constantly exposed to small light pulses) and pulse-like (the system was irradiated from time to time with more powerful pulses).

The obtained results are perfectly in line with theoretical predictions. External light effects slow down the decay of particles, returning them to their original state, which is far from the state of decay. The magnitude of this effect for the two studied modes also coincides with the predictions. The maximum life of unstable excited rubidium atoms was extended up to 30-fold.

Quantum mechanics and consciousness

Electrons and fullerenes cease to show their wave properties, aluminum plates cool down and unstable particles freeze while going through their decay, under the watchful eye of the observer the world changes. Why cannot this be the evidence of involvement of our minds in the workings of the world? So maybe Carl Jung and Wolfgang Pauli (Austrian physicist and Nobel laureate, the pioneer of quantum mechanics) were correct after all when they said that the laws of physics and consciousness should be seen as complementary? 

We are only one step away from admitting that the world around us is just an illusory product of our mind. Scary, isn’t it? Let us then again try to appeal to physicists. Especially when in recent years, they favor less the Copenhagen interpretation of quantum mechanics, with its mysterious collapse of the wave function, giving place to another quite down to earth and reliable term decoherence.

Here’s the thing, in all these experiments with the observations, the experimenters inevitably impacted the system. They lit it with a laser and installed measuring devices. But this is a common and very important principle:you cannot observe the system or measure its properties without interacting with it. And where there is interaction, there will be modification of properties. Especially when a tiny quantum system is impacted by colossal quantum objects. So the eternal Buddhist observer neutrality is impossible.

This is explained by the term “decoherence”, which is an irreversible, from the point of view of thermodynamics, process of altering the quantum properties of the system when it interacts with another larger system. During this interaction the quantum system loses its original properties and becomes a classic one while “obeying ” the large system. This explains the paradox of Schrödinger’s cat: the cat is such a large system that it simply cannot be isolated from the rest of the world. The mere design of this mental experiment is not quite correct.

In any event, compared to the reality of consciousness as an act of creation, decoherence represents a much more convenient approach. Perhaps even too convenient. Indeed, with this approach, the entire classical world becomes one big consequence of decoherence. And as the authors of one of the most prominent books in this field stated, such an approach would also logically lead to statements like “there are no particles in the world” or ” there is no time on a fundamental level”.

Is it the creator-observer or powerful decoherence? We have to choose between the two evils. But remember, now scientists are increasingly convinced that the basis of our mental processes is created by these notorious quantum effects. So, where the observation ends and reality begins, is up to each of us.
Watch the video. URL:https://youtu.be/IOYyCHGWJq4

Quantum Equation Suggests the Big Bang Never Occurred and the Universe Has No Beginning 

New study gives an astonishing answer to the eternal question of how the world began. Two astrophysicists argue that the Big Bang may never have happened, meaning the universe may have existed forever.

The model they suggest complements Einstein’s theory of general relativity with quantum corrections, and could also explain dark matter and dark energy.

It’s needless to say that this hypothesis on the origin of the universe is drastically different from most modern cosmological models. One of the most popular ones, the Big Bang theory, suggests that the universe began from a single, infinitely dense point known as the “singularity,” which began to expand 13.8 billion years ago resulting in a “Big Bang.” This is when the universe began according to the proponents of this model.

The Big Bang theory is derived from the mathematics of general relativity, but there are some weak points in it, since it can only explain what happened immediately after the Big Bang, but not before.

Now, Dr. Ahmed Farag Ali of Benha University, Egypt, in collaboration with Professor Saurya Das of the University of Lethbridge, Canada, came up with a series of equations that present an eternal universe with no beginning nor end.

In their work, Ali and Das used the ideas of David Bohm, American theoretical physicist, to make quantum corrections to an equation developed by Indian physicist Amal Kumar Raychaudhuri (the so-called Raychaudhuri’s equation), thus combining elements from both quantum mechanics and general relativity. As a result, they got a universe that was much smaller in the past, but never existed as the infinite density point.

The Big Bang singularity is the most serious problem of general relativity because the laws of physics appear to break down there,” says Ali.

What about dark energy and dark matter? It is another unsolved mystery of the universe that has been torturing scientific minds for years, as it has been confirmed that dark matter together with dark energy form approximately 95% of the total content of the universe, but yet so little is known about these mysterious phenomena.

Here Das and Ali’s model suggests that dark energy and dark matter may be derived from a Bose-Einstein condensate, a state of matter in which particles display macroscopic quantum phenomena. This condensate existed in the early universe and may have been formed by gravitons – hypothetical particles that flood the universe and carry gravity but have no mass.

Of course, the model suggested by Ali and Das is not a full theory of quantum gravity, but it is another major attempt to unite quantum theory and general relativity, which has been one of the most significant challenges in physics for the last decades.

Featured image: This is an artist’s concept of the metric expansion of space, where space (including hypothetical non-observable portions of the universe) is represented at each time by the circular sections.

Quantum Experiment Shows How The Present Can Change The Past, & That’s Not All.

 “We choose to examine a phenomenon which is impossible, absolutely impossible, to explain in any classical way, and which has in it the heart of quantum mechanics. In reality, it contains the only mystery.” Richard Feynman, a Nobel laureate of the twentieth century (Radin, Dean. Entangled Minds: Extrasensory Experiences.

The concept of “time” is a weird one, and the world of quantum physics is even weirder. There is no shortage of observed phenomena which defy our understanding of logic, bringing into play thoughts, feelings, emotions – consciousness itself, and a post-materialist view of the universe. This fact is no better illustrated than by the classic double slit experiment, which has been used by physicists (repeatedly) to explore the role of consciousness and its role in shaping/affecting physical reality. (source) The dominant role of a physical material (Newtonian) universe was dropped the second quantum mechanics entered into the equation and shook up the very foundation of science, as it continues to do today.

“I regard consciousness as fundamental. I regard matter as derivative from consciousness. We cannot get behind consciousness. Everything that we talk about, everything that we regard as existing, postulating consciousness.”  –  Max Planck, theoretical physicist who originated quantum theory, which won him the Nobel Prize in Physics in 1918

There is another groundbreaking, weird experiment that also has tremendous implications for understanding the nature of our reality, more specifically, the nature of what we call “time.”

It’s known as the “delayed-choice” experiment, or “quantum eraser,” and it can be considered a modified version of the double slit experiment.

To understand the delayed choice experiment, you have to understand the quantum double slit experiment.

In this experiment, tiny bits of matter (photons, electrons, or any atomic-sized object) are shot towards a screen that has two slits in it. On the other side of the screen, a high tech video camera records where each photon lands. When scientists close one slit, the camera will show us an expected pattern, as seen in the video below. But when both slits are opened, an “interference pattern” emerges – they begin to act like waves. This doesn’t mean that atomic objects are observed as a wave (even though it recently has been observed as a wave), they just act that way. It means that each photon individually goes through both slits at the same time and interferes with itself, but it also goes through one slit, and it goes through the other. Furthermore, it goes through neither of them. The single piece of matter becomes a “wave” of potentials, expressing itself in the form of multiple possibilities, and this is why we get the interference pattern.

How can a single piece of matter exist and express itself in multiple states, without any physical properties, until it is “measured” or “observed?” Furthermore, how does it choose which path, out of multiple possibilities, it will take?

Then, when an “observer” decides to measure and look at which slit the piece of matter goes through, the “wave” of potential paths collapses into one single path. The particle goes from becoming, again, a “wave” of potentials into one particle taking a single route. It’s as if the particle knows it’s being watched. The observer has some sort of effect on the behavior of the particle.

This quantum uncertainty is defined as the ability, “according to the quantum mechanic laws that govern subatomic affairs, of a particle like an electron to exist in a murky state of possibility — to be anywhere, everywhere or nowhere at all — until clicked into substantiality by a laboratory detector or an eyeball.” 

According to physicist Andrew Truscott, lead researcher from a study published by the Australian National University, the experiment suggests that “reality does not exist unless we are looking at it.” It suggests that we are living in a holographic-type of universe.

Delayed Choice/Quantum Eraser/Time

So, how is all of this information relevant to the concept of time? Just as the double slit experiment illustrates how factors associated with consciousness collapse the quantum wave function (a piece of matter existing in multiple potential states) into a single piece of matter with defined physical properties (no longer a wave, all those potential states collapsed into one), the delayed choice experiment illustrates how what happens in the present can change what happens(ed) in the past. It also shows how time can go backwards, how cause and effect can be reversed, and how the future caused the past.

Like the quantum double slit experiment, the delayed choice/quantum eraser has been demonstrated and repeated time and time again. For example, Physicists at The Australian National University (ANU) have conducted John Wheeler’s delayed-choice thought experiment, the findings were recently published in the journal Nature Physics. (source)

In 2007 (Science 315, 966, 2007), scientists in France shot photons into an apparatus and showed that their actions could retroactively change something which had already happened.

“If we attempt to attribute an objective meaning to the quantum state of a single system, curious paradoxes appear: quantum effects mimic not only instantaneous action-at-a-distance, but also, as seen here, influence of future actions on past events, even after these events have been irrevocably recorded.” – Asher Peres, pioneer in quantum information theory

The list literally goes on and on, and was first brought to the forefront by John Wheeler, in 1978, which is why I am going to end this article with his explanation of the delayed choice experiment. He believed that this experiment was best explained on a cosmic scale.

Cosmic Scale Explanation

He asks us to imagine a star emitting a photon billions of years ago, heading in the direction of planet Earth. In between, there is a galaxy. As a result of what’s known as “gravitational lensing,” the light will have to bend around the galaxy in order to reach Earth, so it has to take one of two paths, go left or go right. Billions of years later, if one decides to set up an apparatus to “catch” the photon, the resulting pattern would be (as explained above in the double slit experiment) an interference pattern. This demonstrates that the photon took one way, and it took the other way.

One could also choose to “peek” at the incoming photon, setting up a telescope on each side of the galaxy to determine which side the photon took to reach Earth. The very act of measuring or “watching” which way the photon comes in means it can only come in from one side. The pattern will no longer be an interference pattern representing multiple possiblities, but a single clump pattern showing “one” way.

What does this mean? It means how we choose to measure “now” affects what direction the photon took billions of years ago. Our choice in the present moment affected what had already happened in the past….

This makes absolutely no sense, which is a common phenomenon when it comes to quantum physics. Regardless of our ability make sense of it, it’s real.

This experiment also suggests that quantum entanglement (which has also been verified, read more about that here) exists regardless of time. Meaning two bits of matter can actually be entangled, again, in time.

Time as we measure it and know it, doesn’t really exist.

This strange material could reveal the link between classical and quantum physics.

Classical and quantum physics are defined by what makes them so different, but an even bigger question has plagued physicists for decades: what links these two opposing views together? Why do the fundamental laws of classical physics fail at the quantum level, and can they be reconciled?

Now, thanks to a newly developed material, scientists might be closing in on the answer, because they’ve devised a way to see quantum mechanics occur on a scale visible to the naked eye.

“We found a particular material that is straddling these two regimes,” says team leader N. Peter Armitage, from Johns Hopkins University.

“Usually we think of quantum mechanics as a theory of small things, but in this system quantum mechanics is appearing on macroscopic length scales. The experiments are made possible by unique instrumentation developed in my laboratory.”

The material in question is a type of topological insulator. This type of material was first predicted back in the 1980s, and scientists have been producing different variations of it since 2007.

Topological insulators are special because they’re conductive on their outer layer but, internally, it’s an insulator. This means that electrons can only flow along the outside of the material, causing them to display some really weird behaviours.

For their experiment, Armitage and his team created topological insulators made from pieces of bismuth and selenium that were about the size of finger nail clippings of various thicknesses.

They revealed for the first time that these two elements offer a way for physicts to see the quantum phenomena on a much larger scale than usual.

To figure this out, they sent a beam of terahertz radiation (sometimes called THz or T-rays – an invisible spectrum of light) through these insulators, measuring the beam as it travelled.

The team found that the beam changed as it passed through the material by rotating slightly – an effect that’s usually only observed at the atomic scale.

Even better, the amount of change they saw could be accurately predicted using the same complex mathematics that govern at the quantum level. This is the first time researchers have witnessed quantum mechanics occurring on the macro scale in a topological insulator.

That might not sound like a big deal, but the insulator has given the team a rare opportunity to reproduce a quantum effect in a larger object, and it shows a promising link between the world of quantum and classical mechanics.

This link is something scientists have been chasing for decades, as part of the hunt for the elusive ‘theory of everything‘.

To put it simply, scientists know that the rules of the quantum world – which explain how atoms operate on an extremely small scale – have to somehow be linked to the everyday classical world – the rules of bigger systems, like how a ball rolls or a rocket is launched.

But the problem is, this link is elusive. Many of the rules of classical physics break down at the quantum level. For example, gravity, which is crucial to our world, doesn’t seem to affect quantum systems at all, and the rules of classical physics can’t explain the ‘spooky action at a distance‘ of quantum entanglement.

This experiment suggests that topological insulators could be the way we finally see that link once and for all, if we can continue to manipulate them further.

Though the new experiment is definitely a step in the right direction and “a piece of the puzzle”, according to Armitage, there’s still a lot of work for researchers to do before the link between the two different physical worlds is fully understood.

The hope is that one day we’ll have a completed picture of physics, and new materials like the team’s topological insulator might be the way we get there.

Quantum Theory Proves Consciousness Moves To Another Universe After Death

A book titled “Biocentrism: How Life and Consciousness Are the Keys to Understanding the Nature of the Universe” has stirred up the Internet, because it contained a notion that life does not end when the body dies, and it can last forever. The author of this publication, scientist Dr. Robert Lanza who was voted the 3rd most important scientist alive by the NY Times, has no doubts that this is possible.


Lanza is an expert in regenerative medicine and scientific director of Advanced Cell Technology Company. Before he has been known for his extensive research which dealt with stem cells, he was also famous for several successful experiments on cloning endangered animal species.

But not so long ago, the scientist became involved with physics, quantum mechanics and astrophysics. This explosive mixture has given birth to the new theory of biocentrism, which the professor has been preaching ever since. Biocentrism teaches that life and consciousness are fundamental to the universe. It is consciousness that creates the material universe, not the other way around.

Lanza points to the structure of the universe itself, and that the laws, forces, and constants of the universe appear to be fine-tuned for life, implying intelligence existed prior to matter. He also claims that space and time are not objects or things, but rather tools of our animal understanding. Lanza says that we carry space and time around with us “like turtles with shells.” meaning that when the shell comes off (space and time), we still exist.

The theory implies that death of consciousness simply does not exist. It only exists as a thought because people identify themselves with their body. They believe that the body is going to perish, sooner or later, thinking their consciousness will disappear too. If the body generates consciousness, then consciousness dies when the body dies. But if the body receives consciousness in the same way that a cable box receives satellite signals, then of course consciousness does not end at the death of the physical vehicle. In fact, consciousness exists outside of constraints of time and space. It is able to be anywhere: in the human body and outside of it. In other words, it is non-local in the same sense that quantum objects are non-local.

Lanza also believes that multiple universes can exist simultaneously. In one universe, the body can be dead. And in another it continues to exist, absorbing consciousness which migrated into this universe. This means that a dead person while traveling through the same tunnel ends up not in hell or in heaven, but in a similar world he or she once inhabited, but this time alive. And so on, infinitely. It’s almost like a cosmic Russian doll afterlife effect.


This hope-instilling, but extremely controversial theory by Lanza has many unwitting supporters, not just mere mortals who want to live forever, but also some well-known scientists. These are the physicists and astrophysicists who tend to agree with existence of parallel worlds and who suggest the possibility of multiple universes. Multiverse (multi-universe) is a so-called scientific concept, which they defend. They believe that no physical laws exist which would prohibit the existence of parallel worlds.

The first one was a science fiction writer H.G. Wells who proclaimed in 1895 in his story “The Door in the Wall”. And after 62 years, this idea was developed by Dr. Hugh Everett in his graduate thesis at the Princeton University. It basically posits that at any given moment the universe divides into countless similar instances. And the next moment, these “newborn” universes split in a similar fashion. In some of these worlds you may be present: reading this article in one universe, or watching TV in another.

The triggering factor for these multiplyingworlds is our actions, explained Everett. If we make some choices, instantly one universe splits into two with different versions of outcomes.

In the 1980s, Andrei Linde, scientist from the Lebedev’s Institute of physics, developed the theory of multiple universes. He is now a professor at Stanford University. Linde explained: Space consists of many inflating spheres, which give rise to similar spheres, and those, in turn, produce spheres in even greater numbers, and so on to infinity. In the universe, they are spaced apart. They are not aware of each other’s existence. But they represent parts of the same physical universe.

The fact that our universe is not alone is supported by data received from the Planck space telescope. Using the data, scientists have created the most accurate map of the microwave background, the so-called cosmic relic background radiation, which has remained since the inception of our universe. They also found that the universe has a lot of dark recesses represented by some holes and extensive gaps.

Theoretical physicist Laura Mersini-Houghton from the North Carolina University with her colleagues argue: the anomalies of the microwave background exist due to the fact that our universe is influenced by other universes existing nearby. And holes and gaps are a direct result of attacks on us by neighboring universes.


So, there is abundance of places or other universes where our soul could migrate after death, according to the theory of neo-biocentrism. But does the soul exist? Is there any scientific theory of consciousness that could accommodate such a claim? According to Dr. Stuart Hameroff, a near-death experience happens when the quantum information that inhabits the nervous system leaves the body and dissipates into the universe. Contrary to materialistic accounts of consciousness, Dr. Hameroff offers an alternative explanation of consciousness that can perhaps appeal to both the rational scientific mind and personal intuitions.

See also: Russian Scientist Photographs Soul Leaving Body And Quantifies Chakras. You Must See This!

Consciousness resides, according to Stuart and British physicist Sir Roger Penrose, in the microtubules of the brain cells, which are the primary sites of quantum processing. Upon death, this information is released from your body, meaning that your consciousness goes with it. They have argued that our experience of consciousness is the result of quantum gravity effects in these microtubules, a theory which they dubbed orchestrated objective reduction (Orch-OR).

Consciousness, or at least proto-consciousness is theorized by them to be a fundamental property of the universe, present even at the first moment of the universe during the Big Bang. “In one such scheme proto-conscious experience is a basic property of physical reality accessible to a quantum process associated with brain activity.”

Our souls are in fact constructed from the very fabric of the universe – and may have existed since the beginning of time. Our brains are just receivers and amplifiers for the proto-consciousness that is intrinsic to the fabric of space-time. So is there really a part of your consciousness that is non-material and will live on after the death of your physical body?

Dr Hameroff told the Science Channel’s Through the Wormhole documentary: “Let’s say the heart stops beating, the blood stops flowing, the microtubules lose their quantum state. The quantum information within the microtubules is not destroyed, it can’t be destroyed, it just distributes and dissipates to the universe at large”. Robert Lanza would add here that not only does it exist in the universe, it exists perhaps in another universe. If the patient is resuscitated, revived, this quantum information can go back into the microtubules and the patient says “I had a near death experience”

He adds: “If they’re not revived, and the patient dies, it’s possible that this quantum information can exist outside the body, perhaps indefinitely, as a soul.”

This account of quantum consciousness explains things like near-death experiences, astral projection, out of body experiences, and even reincarnation without needing to appeal to religious ideology. The energy of your consciousness potentially gets recycled back into a different body at some point, and in the mean time it exists outside of the physical body on some other level of reality, and possibly in another universe.